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Abstract

The maintenance of free calcium in the cytoplasm is requisite for cell integrity and the regime of
the multi-cellular process. Overproduction and degradation to manage this cellular entity produce
offensive changes in tissue performance and as a result, commence fibrotic diseases. Thus, there
is a necessity to know the cellular process for the inclusion and extrusion of free calcium. Here, a
mathematical model is framed to investigate the role of buffer and calcium concentration on fibroblast
cells. In this context, the Caputo-Fabrizio advection reaction-diffusion model along with apposite
biophysical initial and boundary conditions is considered. The analytical solution is obtained and
used to analyze the diverse mechanisms of calcium on fibroblast cells. The obtained results reveal that
when the fractional order goes to one, the Caputo–Fabrizio fractional derivative provides a concise
calcium profile and well-managed cellular entity due to the exponential kernel law.
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1 Introduction

Fibroblast is non-excitable and heterogeneous structural cells whose primary function is the
production of extracellular matrix for tissue maintenance and repair. It plays a pivotal role in
maintaining tissue integrity, and in healing processes. They participate in fibrotic disorders in
the lung, skin, and other tissues. All these events are closely related to another mechanism in
cells, particularly with the signals from the local environment or extracellular medium and the
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calcium diffusion mechanisms [1]. Calcium ion acts as a messenger to perform all these functions
in fibroblasts cell. Fibroblast cell regulates calcium concentration at different levels in response to
the requirements for activation and performance of various physiological processes like wound
healing, tissue remodeling, and tissue growth. This calcium regulation mechanism and the calcium
concentration levels are required for cellular activities and their maintenance [2]. Therefore, it is
necessary to understand calcium regulation processes in fibroblast cells. This calcium regulation
mechanism involves processes like diffusion, advection, flux, and buffering phenomena.

Buffer binds the excess calcium present in the cell to form bound buffers and lower the calcium
concentration in the cell [3]. The calcium in excess of a limit for a longer span will be toxic and can
cause cell death [4]. On the requirement for a higher concentration of calcium for any physiological
process in fibroblast cells, these bound buffers release it to fulfill the requirement. Thus, the buffers
act as stores of calcium concentration and also perform functions like source and sinks to regulate
the concentration levels.

Experimental studies have shown that fibroblast shows excitability in particular growth stages.
The excitability of a cell is an important mechanism in calcium signaling since a strong interplay
exists between the membrane potential and the internal calcium concentration. The increase
in intracellular calcium associated with action potentials provides a mechanism for long-range
and fast-coordinated calcium signaling in excitable cells. Although in-excitable cells it has been
reported that fibroblast functions are unclear. Thus to fully understand the calcium regulation
mechanisms in fibroblast cells, it will be important to understand the local changes in calcium
levels.

Several theoretical investigations are reported in the literature to study calcium dynamics in
fibroblast cells [5, 6]. Also, some mathematical model has been developed in the literature to study
calcium dynamics in astrocyte [7–9], neuron [10–18], myocytes [19], oocyte [20, 21], T lymphocyte
[22, 23], cholangiocyte [24] and another cell. But, no attempt is reported in the literature to study
the effect of disturbances in intracellular calcium dynamic on fibroblast cells with an exponential
kernel law. In the view of above, here an attempt has been made to develop a mathematical
model to investigate the role of buffer and calcium concentration on fibroblast cells with the
Caputo-Fabrizio fractional operator. To the best of the author’s knowledge, no attempts are
registered to investigate the effect of calcium dynamics on fibroblast cells by using fractional
calculus approaches. Fractional derivative is a natural extension of classical derivative to study
differential equations with a memory-dependent derivative [25–30]. Fractional derivative provides
great freedom for the choice of order of derivative and thus illustrates the reality of complex
phenomena in a more understanding and expressive way [31–37]. In this attempt, we use the
Caputo-Fabrizio derivative due to its non-singular exponential kernel.

The structure of the paper is as follows: In Section 2, we introduce some mathematical prelimi-
naries. In Section 3, we developed the Caputo-Fabrizio advection reaction-diffusion model for
calcium dynamics in fibroblast cells. In Section 4, we present numerical simulations for various
physiological conditions of the calcium model. Finally, the conclusion is provided in section 5.

2 Mathematical preliminaries

In this section, some preliminaries are provided about the Caputo-Fabrizio fractional derivative
with a nonsingular kernel. According to [26], the formal definition of Caputo-Fabrizio fractional
derivatives is defined as follows:

Definition 1 Let f ∈ H1(x, y), with y > x, then the Caputo-Fabrizio derivative of function f (t) of order
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α ∈ [0, 1] is defined as

CFDα
t f (t) =

M(α)

1 − α

t∫
x

f ′(w) exp
[
−α

t − w
1 − α

]
dw, (1)

where M(α) is a normalization function and satisfies M(0) = M(1) = 1.

If f /∈ H1(x, y), then the derivative of function f (t) is defined as

CFDα
t f (t) =

αM(α)

1 − α

t∫
x

( f (t)− f (w)) exp
[
−α

t − w
1 − α

]
dw. (2)

Remark 1 If β = 1−α
α ∈ [0,∞), α = 1

1+β , then the equation (2) can be modified as

CFDα
t f (t) =

N(α)

α

t∫
x

f ′(t) exp
[
−

t − w
β

]
dw, (3)

where N(0) = N(∞) = 1. Moreover,

lim
β→0

(
1
α

exp
(
−

t − w
β

))
= δ(w − t). (4)

According to [38], the Caputo-Fabrizio integral is defined as follows:

Definition 2 The Caputo-Fabrizio integral of function f (t) of order α ∈ [0, 1] and t ≥ 0 is defined as

CF Iα
t f (t) =

2(1 − α)

(2 − α)M(α)
f (t) +

2α

(2 − α)M(α)

t∫
0

f (s)ds. (5)

Further simplification gives us as

2(1 − α)

(2 − α)M(α)
+

2α

(2 − α)M(α)
= 1. (6)

3 Mathematical model and solution

The mathematical model includes diffusion of calcium and buffer in calcium signaling phenomena.
The process occurs inside the plasma membrane of the cells. The calcium kinetics in fibroblast
cells is governed by a set of advection reaction-diffusion equations in the form of a bimolecular
reaction between Ca2+ and buffer [3, 39, 40].[

Ca2+
]
+ [B]

k+⇔
k−

[CaB] . (7)
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The remaining reaction-diffusion equations can be derived using Fickian diffusion as [39, 40]

∂
[
Ca2+]
∂t

= DC · ∇2
[
Ca2+

]
+

∑
k

Rk, (8)

∂ [B]
∂t

= DB · ∇2 [B] + Rk, (9)

∂ [CaB]
∂t

= DCB · ∇2 [CaB]− Rk, (10)

where Rk = −k+ [B]
[
Ca2+] + k− [CaB] , known as the reaction term and DK is the diffusion

coefficient for the respective entity. Although, the buffer do not capable to diffuse with other entity
is considered a stationary buffer and mathematically described by setting DB = DCB = 0. Now,
including equations (7-10) the mathematical model is become as

∂u
∂t

= Dc
∂2u
∂x2 − v

∂u
∂x

− k+ · [B]∞ (u − u∞) , (11)

where u = [Ca2+].

The apposite biophysical initial condition is defined as

u(x, 0) = u∞, x > 0, (12)

and the boundary conditions are

u(0, t) = u0, t > 0,
∂u
∂x

= 0, x → ∞, t > 0. (13)

For simplicity, we replaced u − u∞ = u and k+ · [B]∞ = f then the mathematical model is
rearranged as

∂u
∂t

= Dc
∂2u
∂x2 − v

∂u
∂x

− f u. (14)

The apposite biophysical initial and boundary conditions are modified as

u(x, 0) = 0, x > 0,
u(0, t) = u∞ − u0, t > 0, ∂u

∂x = 0, x → ∞, t > 0.
(15)

The non-dimensional calcium model is formulated by introducing the dimensionless variables

x∗ = x

√
f

DC
, t∗ = f t, u∗ =

u
u0

, k =
v√
f DC

.
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Hence, equation (14) turns out to be the following equation as

∂u
∂t

=
∂2u
∂x2 − k

∂u
∂x

− u, (16)

and the corresponding conditions are

u(x, 0) = 0, x > 0,
u(0, t) = u∞ − u0, t > 0, ∂u

∂x = 0, x → ∞, t > 0.
(17)

Next, we defined a new solute concentration u(x, t) = exp
(

kx
2

)
γ(x, t) and it is easy to verify that

γ(x, t) satisfies the following non-dimensional calcium problem.

∂γ

∂t
=

∂2γ

∂x2 −

(
k2

2
+ 1

)
γ. (18)

For simplicity, we replaced
(

k2

2 + 1
)
= ξ2. Finally, the calcium model is formulated as follows

∂γ

∂t
=

∂2γ

∂x2 − ξ2γ, (19)

and the corresponding conditions are

γ(x, 0) = 0, x > 0,
γ(0, t) = u0 − u∞, t > 0, γ(x, t) = 0, x → ∞, t > 0.

(20)

Now we convert the calcium model into the Caputo-Fabrizio sense to improve the accuracy and
introduce a memory and hereditary behavior of cells. Thus the Caputo-Fabrizio calcium model
for fibroblast cells is represented as follows:

CFDα
t γ(x, t) =

∂2γ

∂x2 − ξ2γ. (21)

Applying the Laplace transform on equation (21), we obtain the following transformed problem as

sγ̄(x, s)− γ(x, 0)
(1 − α)s + α

=
∂2γ̄(x, s)

∂x2 − ξ2γ̄(x, s), (22)

where γ̄(x, s) is the Laplace transformation of γ(x, t).

Next, applying the Fourier sine transform on equation (22), the transformed problem is recast as

ŝ̄γ(w, s)
(1 − α)s + α

= −w2̂̄γ(w, s) + wγ̄(0, s)− ξ 2̂̄γ(w, s), (23)

whereˆ̄γ(w, s) is the Fourier sine transform of γ̄(x, s). By using equation (20) we obtain as

ŝ̄γ(w, s)
(1 − α)s + α

= −w2̂̄γ(w, s) + w(u0 − u∞)− ξ 2̂̄γ(w, s). (24)



Joshi et al. | 29

By simple rearrangement give us the following expression

ˆ̄γ(w, s) =
w(u0 − u∞)

w2 + m + ξ2 +
αm2w(u0 − u∞)

(w2 + m + ξ2)
2

1

s + αm(w2+ξ2)
w2+m+ξ2

, (25)

where m = 1/(1 − α). Next, by inverting the Laplace and Fourier transform of equation (25), we
have

γ(x, t) = 2(u0−u∞)δ(t)
π

∞∫
0

w sin(wx)
w2+m+ξ2 dw

+ 2(u0−u∞)
π

∞∫
0

αm2w sin(wx)
(w2+m+ξ2)

2 exp
(

αm(w2+ξ2)t
w2+m+ξ2

)
dw.

(26)

By using the relation

∞∫
0

w sin(wx)
w2 + b2 dw =

π

2
e−bx. (27)

Equation (26) turns out to be

γ(x, t) = (u0 − u∞)δ(t) exp
(
−x

√
m + ξ2

)
+ 2(u0−u∞)

π

∞∫
0

αm2w sin(wx)
(w2+m+ξ2)

2 exp
(

αm(w2+ξ2)t
w2+m+ξ2

)
dw.

(28)

Then by transforming equation (28) to the original coordinate system, we get the calcium concen-
tration in fibroblast cells at any instant as

u(x, t) = (u0 − u∞)δ(t) exp
(
−x

√
m + ξ2 + kx

2

)
+ 2(u0−u∞)

π exp
(

kx
2

)∞∫
0

αm2w sin(wx)
(w2+m+ξ2)

2 exp
(
−

αm(w2+ξ2)t
w2+m+ξ2

)
dw.

(29)

Limiting case of the model (Caputo-Fabrizio order α → 1)

The classical solution of the calcium model is obtained here as a special case or limiting case of the
Caputo-Fabrizio calcium model by approaching α → 1.

When α → 1 we have,

γ(x, t) = lim
α→1

2(u0−u∞)
π

∞∫
0

αm2w sin(wx)
(w2+m+ξ2)

2 exp
(
−

αm(w2+ξ2)t
w2+m+ξ2

)
dw

=
2(u0 − u∞)

π

∞∫
0

w sin(wx) exp
(
−(w2 + ξ2)t

)
dw.

(30)

Then by using equation (30), equation (29) rearrange as follows

γ(x, t) =
(u0 − u∞)

2
√

π

x
t
√

t
exp

(
−ξ2t −

x2

4t

)
, (31)
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and again by transforming equation (31) to the original coordinate system, we get the calcium
concentration in fibroblast cells for the classical case as

u(x, t) =
(u0 − u∞)

2
√

π

x
t
√

t
exp

(
−ξ2t −

x2

4t
+

kx
2

)
. (32)

4 Numerical results and discussion

In this section, we portrayed the spatial and temporal calcium concentration in fibroblast cells for
various amounts of buffer, diffusion coefficient, advection flux, and Caputo-Fabrizio derivative.
The numerical values of a bio-physiological parameter used to simulate the result are provided in
Table 1.

Table 1. Values of bio-physiological parameters [3, 5, 40]

Symbol Parameter Value
DC Diffusion coefficient 260-400 µm2/s
[Bm] Buffer concentration 60-200 µM
k+ (EGTA) Buffer association rate 1.6-30 µM−1s−1

k+ (BAPTA) Buffer association rate 600-900 µM−1s−1

[Ca2+]∞ Background Ca2+ concentration 0.1 µM
v Advection flux 0-30 µm/s
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Figure 1. Calcium concentration against time for various orders of Caputo-Fabrizio derivative

Figure 1 shows the calcium concentration in a fibroblast cell against time for diffusion coefficient
290 µm2/s, advection flux 10 µm/s, and EGTA buffer 1.6 µM. The highest concentration is ob-
served near the source then it decreases to reach its equilibrium conditions. This happened near
the source as free calcium reacted with the buffer and made a calcium-bound buffer. As a result,
the sharp fall is observed after 0.5 seconds and it shows the notable role of a buffer up to 0.5
seconds. Also, the kernel of the Caputo-Fabrizio derivative plays a significant role due to the
exponential kernel law and forces the calcium profile to early achieved stable conditions.
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Figure 2. Calcium concentration against distance for various orders of Caputo-Fabrizio derivative

Figure 2 shows the calcium concentration in a fibroblast cell against distance for diffusion coeffi-
cient 290 µm2/s, advection flux 10 µm/s, and EGTA buffer 1.6 µM. The highest concentration is
observed near the source then subtle rises due to the entry of buffer affinity and then decreases
gradually to reach its equilibrium conditions. The sharp fall is observed after 20 µm, and it shows
the notable role of buffer in the initial stage of cellular activities. As Caputo-Fabrizio derivative
moves to integer order, the calcium concentration is increasing then finally achieved stable con-
ditions. Figures 1 and 2 show the significant role of the Caputo-Fabrizio derivative due to the
exponential kernel law and hence Figures 3-10 are produced only for Caputo-Fabrizio fractional
order α = 0.9.
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Figure 3. Calcium concentration against time for various amounts of EGTA buffer
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Figure 4. Calcium concentration against distance for various amounts of EGTA buffer

Figures 3 and 4 show the calcium concentration in a fibroblast cell against time and space respec-
tively. The bio-physiological parameters used to simulate the result are the same as listed above.
Here, we examine the effect of EGTA buffer over time and space. From the figures, we confirmed
that as the value of buffer increases calcium concentration initiates to decrease due to the free
buffer binds with free calcium.
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Figure 5. Calcium concentration against time for various amounts of BAPTA buffer
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Figure 6. Calcium concentration against distance for various amounts of BAPTA buffer

Figures 5 and 6 show the calcium concentration in a fibroblast cell against time and space respec-
tively. Here, we examine the effect of BAPTA buffer over time and space. From the figures, we
confirmed that as the value of the buffer increases calcium concentration decrease. Also, it is
observed that calcium concentration is dramatically reduced as compared to EGTA buffer due to
the association rate of BAPTA buffer.
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Figure 7. Calcium concentration against time for various diffusion coefficient
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Figure 8. Calcium concentration against distance for various diffusion coefficient

Figures 7 and 8 show the calcium concentration in a fibroblast cell against time and space for
various diffusion coefficients. From the figures, we confirmed that as the value of diffusion
coefficients increases calcium concentration decreases and hence it plays a dual role in the absence
of buffer and contributes to managing cellular activities.
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Figure 9. Calcium concentration against time for presence and absence of advection flux
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Figure 10. Calcium concentration against distance for presence and absence of advection flux

Figures 9 and 10 show the calcium concentration in a fibroblast cell against time and space for
the presence and absence of advection flux. From the figures, we confirmed that the presence of
flux significantly rise the calcium concentration and is thus involved in cellular activities such as
secretion, cell integrity, and so on.

5 Conclusion

We analyzed the effect of disturbances in intracellular calcium dynamic on fibroblast cells with
the Caputo-Fabrizio advection reaction-diffusion equation. The analytical solution is derived
by use of Laplace and Fourier transform techniques. Also, the limiting case of the model is
obtained by setting the Caputo-Fabrizio fractional operator to unity. Numerical simulation is
presented for various physiological conditions to study calcium diffusion in a fibroblast cell. This
approach provides us with a comparably good approximation of the complex geometry of the
cell including various biophysical parameters like buffer, diffusion coefficient, and advection
flux. The results imply that buffer concentration, the binding affinity of EGTA and BAPTA,
the presence and absence of advection flux, and the Caputo-Fabrizio fractional operator has a
significant effect on calcium concentration in fibroblast cells. Moreover, the results shown here are
in agreement with the physiological facts and hence they play an important role in generating
specific calcium concentration patterns necessary for activation, continuation, and termination of
fibroblast during wound healing, fibrotic diseases, and cardiovascular disease. Recently, there are
many new fractional derivatives introduced such as the generalized fractional derivative known
as the Abu-Shady-Kaabar fractional derivative. This fractional derivative can work and obtain
the same results as other well-known fractional derivatives in a very simple way. Therefore, it
is a good direction for future research works to study the present problem in the sense of the
Abu-Shady Kaabar fractional derivative.
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