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Abstract

An age-structured deterministic mathematical model describing the transmission dynamics of Hepati-
tis B (HBV) is proposed in this paper. The model exhibits the phenomenon of backward bifurcation in
which a stable disease-free equilibrium coexists with a stable endemic equilibrium as the basic repro-
duction number (BRN) approaches one. The epidemiological consequence of backward bifurcation
is that the requirement for making the BRN less than one is necessary but not sufficient condition
for efficiently controlling the persistence of the disease in the human population. We estimate the
model parameters with the help of real data from South Africa using the nonlinear least-squares curve
fitting method. We also use the forward normalized sensitivity index technique to determine the
most sensitive parameters. Numerical simulations confirm that reducing the transition of chronically
infected children to adults through treatment is crucial to eliminating Hepatitis-B in South Africa.
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1 Introduction

Hepatitis refers to liver inflammation caused by a virus. Five different strains of virus cause
hepatitis; hepatitis type A, B, C, D, and E written as HAV, HBV, HCV, HDV, and HEV, respectively.
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Viral hepatitis is a life-threatening disease that caused 1.34 million deaths, which is a number
comparable to the annual mortality caused by tuberculosis and greater than that of HIV in 2015
[1]. Over the years (30 or more), plans to eradicate viral hepatitis have increased through different
public health activities. The World Health Assembly first recommended the HBV vaccine into
routine infant immunization in the 1990s to reduce perinatal and early childhood transmission
[1]. The vaccine control strategy was then improved in the 2000s with strategies on blood safety,
healthcare injection safety, injection control, and minimizing the number of people who self-inject
drugs [1]. These combined strategies reduced the perinatal and early childhood transmission,
however, people progressing into chronic are still not minimized because of the lack of access (due
to people who do not know their status and the medications are very expensive) to HBV and HCV
treatment.
HBV is the most common infectious, and endemic among the five strains. Hepatitis B is a viral
disease that attacks the liver causing it not to perform its usual functions (such as; processing of
nutrients, filtration of blood, and fighting infections). The disease has an incubation period of two
to three months and its symptoms include yellowing of skin and eye, weight loss, loss of appetite,
dark urine, pale stool, fatigue, and abdominal pain [2]. HBV has an acute and chronic stage. Acute
HBV disease lasts not longer than six months and the patient may freely recover from the disease,
in fact, it is true for 4 in 5 adults who are infected [2]. Contrarily, if an infected person is living
with the disease for a time greater than six months such person is said to be infected with the
chronic HBV. Acute and chronically infected individuals may and may not have symptoms [2].
Acute and chronic infected individuals are both infectious but chronic infected individuals spread
the disease more than the acute ones. The infectiousness also differs between the children and
adults with more among the children than the adult. The chance of developing chronic HBV is
higher among children than adults, 95% of the acute infants infected from their mothers or before
the age of 5 years developed chronic HBV and only 5% among adults [2]. HBV can be transmitted
vertically during the childbirth. This transmission does not imply that HBV is genetic, it is also
called perinatal transmission.
The disease can also be transmitted horizontally via sexual transmission with the infected persons
or exposure to infected blood (through reckless unscreened blood transfusion, unsafe injection, or
exposure to sharp instrument that carries infected blood as the virus lives for seven days outside)
[3]. Chronic HBV can be treated with medicines, including oral antiviral agents like Livolin,
Lamivudine, Adefovir, etc. These drugs protect liver cells from viral damage, protect against
progression into liver cancer, and reduce mortality due to HBV. However, access to HBV treatment
is limited due to the lack of HBsAg and HBeAg tests. As of 2019, only 30.4 million people which is
equivalent to 10.5% of the 296 million people estimated to be living with HBV are aware of their
infections, while only 6.6 million people (22%) of the people diagnosed were on treatment [2].
40% of the world’s total population had contact with HBV infection. Geographically HBV preva-
lence differs between the WHO regions, also the mode of transmission differs from one region to
another. Transmission in high prevalence areas is predominantly mother-child, mostly during
childbirth. This area has a prevalence of 10%-20% and the states under this category include; South
Asia, China, and Sub-Saharan Africa. Intermediate prevalence transmission is mostly horizontal
during childhood. The intermediate prevalence area has 3%-5% HBV infection prevalence and
the countries include; Mediterranean countries, Japan, central Asia, the Middle East, and Latin
and South America. Lower prevalence transmission is predominantly via sexual intercourse. The
lower region has 0.1%-2% prevalence and the countries are Western Europe, the United States,
Canada, Australia, and New Zealand [1, 4]. Research in 2015 showed that 257 million people were
living with chronic HBV and about 1 million death cases yearly [1].
Further research in 2019 showed that 296 million people were living with chronic HBV and the
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disease led to the death of 820,000 people [2]. HBV was highly endemic in South Africa (9.6%
prevalence of chronic carriage in black South Africans and 76% exposed to HBV) before the
introduction of vaccine (HepB3) in 1995 [5, 6]. HBV transmission is mostly horizontal in South
Africa, especially between children less than 5 years of age. The disease prevalence among children
5 years of age declined from 12.8% before the vaccine was introduced to 3.0% in 2009 [5]. Between
the period of 2000 to 2018, HepB3 coverage in South Africa averaged 76.6%.
The idea of a compartmental model first appeared in the 1920s [7]. The epidemic models Kermack-
McKendrick (1927) and Reed-Frost (1928) both depict the interaction between susceptible, infected,
and immune individuals in a community [8]. Since then, researchers have studied disease with an
SIR model to predict the transmission dynamics and the possibility of controlling the disease by
applying control strategies. This leads to the recent studies on the analysis and local bifurcation
of the SIR model or prey-predator model such as [9–11]. Mathematical modeling of disease is
continuously in existence, the recent coronavirus disease pandemic attracted a lot of researchers
to write thousands of papers on the transmission dynamics of the disease among are [12–15].
Many mathematical models have been proposed in the literature to study HBV dynamics. Age
is one of the significant characteristics in mathematical epidemiology [16]. Few researchers
developed age-structured mathematical models in studying Hepatitis B among are [17–24]. The
current paper describes HBV model analysis with vital dynamics and heterogeneous mixture. The
details transition flow with differential infectivity is the most important aspect of this study and
therefore future researchers especially those interested in optimal control analysis can use the
model to determine the best among available control strategies. Finding the best control strategy
will directly help policymakers like WHO in controlling the HBV disease as the target year (2030)
of elimination is fast approaching.
The paper is organized as follows: Section 2 contains model formulation, Section 3 contains model
analysis, Section 4 involves model fitting and parameters estimations, sensitivity analysis is carried
out in Section 5, while Section 6 and Section 7 contain numerical simulations, discussion, and
conclusion respectively.

2 Model formulation

The model is developed to study the transmission dynamics of Hepatitis B viral infection. The total
population denoted by N(t) is divided into seven disjoint compartments. Susceptible children
Sc(t), susceptible adult Sa(t), children infected with acute HBV Ac(t), children infected with
chronic HBV Cc(t), adult infected with acute HBV Aa(t), adult infected with chronic HBV Ca(t)
and the removed or recovered compartment R(t). The recruitment into the susceptible class is by
birth and migration at a constant rate π. Progression from susceptible children into susceptible
adult ϕ compartment is by age. The susceptible population decreases with the emergence of the
infection at the rate λ. Children are more susceptible to becoming infected (this is the reason for
adding the parameter θ reducing the rate of infection in adults). The probability of being infected
with the disease is higher when in contact with a chronic infectious individual (α1 and α2 are used
as parameters increasing the transmission rate by chronic individuals). The proportion of acutely
infected children who progress into chronic is greater than that of adult (i.e. q > k). Progression
from chronically infected children compartment into chronically infected adult compartment τ is
by age. The mortality rate δ due to disease only occurs in the chronic infection compartment (so
we consider any death in the acute infection compartment as natural death µ). The transmission
rate which is the force of infection is given by;

λ =
β(Aa + Ac + α1Cc + α2Ca)

N
,
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where β is the contact rate and,

N(t) = Sc(t) + Sa(t) + Ac(t) + Aa(t) + Cc(t) + Ca(t) + R(t).

Figure 1 gives the schematic diagram of the model with the model equations given in system (1).

Figure 1. Schematic diagram of model (1). Solid arrows indicate transitions and expressions next to arrows show
the per capita flow rate between compartments.

By taking into the given information above and the schematic diagram, the system of the disease
can be written as:

dSc

dt
= πp − ϕSc − λSc − µSc,

dSa

dt
= π(1 − p) + ϕSc − θλSa − µSa,

dAc

dt
= λSc − (γ1 + µ)Ac,

dAa

dt
= θλSa − (γ1 + µ)Aa,

dCc

dt
= qγ1 Ac − (γ2 + τ + µ + δ)Cc,

dCa

dt
= kγ1 Aa + τCc − (γ2 + µ + δ)Ca,

dR
dt

= γ1[(1 − q)Ac + (1 − k)Aa] + γ2(Cc + Ca)− µR.

(1)
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The variables and parameters with their interpretations are summarized in Table 1.

Table 1. Description of the variables and parameters used in the model (1).

Variable Description
N Total human population
Sc Susceptible children
Sa Susceptible adult
Ac Acute infected children
Aa Acute infected adult
Cc Chronic infected children
Ca Chronic infected adult
R Recovered individuals

Parameter Description
π Recruitment rate
p Fraction of π that is a child
µ Natural death rate
ϕ Progression rate from susceptible children into susceptible adult
β Contact rate

α1, α2 Modification parameter increasing the infectiousness of chronically
infected children and adults, respectively

θ Modification parameter decreasing the chance of becoming infected of susceptible adult
τ Progression rate of chronically infected children that grow into adult
q Fraction of acutely infected children that becomes chronic
k Fraction of acutely infected adult that becomes chronic

γ1 Rate of leaving acute class
γ2 Rate of leaving chronic infection class

δ Disease-induced death rate

3 Basic properties of the model

Boundedness and positivity of solutions

Theorem 1 The closed set

D =

{
(Sc(t), Sa(t), Ac(t), Aa(t), Cc(t), Ca(t), R(t)) ϵ R7

+ : N ≤ π

µ

}
,

is positively invariant and attracts all positive solutions of the model. We have a single species of human
population and so they can be in the same invariant set.

Proof We are to show that R7
+ is positively invariant, that is all solutions of system (1) initiated in

D do not leave D. Now, from the third, fourth, fifth, sixth, and seventh equation of (1), we obtain
that,

dAc(t)
dt

≥ −(γ1 + µ)Ac, for t ∈ [0, t̃),

dAa(t)
dt

≥ −(γ1 + µ)Aa, for t ∈ [0, t̃),

dCc(t)
dt

≥ −(γ2 + τ + µ + δ)Cc, for t ∈ [0, t̃),

dCa(t)
dt

≥ −(γ2 + µ + δ)Ca, for t ∈ [0, t̃).

(2)
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Now, let Sc(0) > 0, Sa(0) > 0, Ac(0) > 0, Aa(0) > 0, Cc(0) > 0, Ca(0) > 0, and R(0)) > 0.
Suppose Sc(0) and Sa(0) are non-positive, then there exists a time t̃ > 0, such that Sc(t) > 0 and
Sa(t) > 0 for t ∈ [0, t̃) and Sc(t̃) = Sa(t̃) = 0. It follows that Ac(0) > 0, Aa(0) > 0, Cc(0) > 0 and
Ca(0) > 0 for t ∈ [0, t̃). Thus, from the first and second equations of system (1), we have

dSc(t)
dt

≥ −(ϕ + λ + µ)Sc(t), for t ∈ [0, t̃),

dSa(t)
dt

≥ −(θλ + µ)Sa(t), for t ∈ [0, t̃).

One can clearly see that, Sc(0) > 0 and Sa(0) > 0 which contradict our assumption of Sc(t̃) =
Sa(t̃) = 0. Hence Sc(t) and Sa(t) are positive. Similarly, positivity of subsystem (1) excluding the
first and second equation can be written in matrix form as follows,

dX(t)
dt

= AY(t) + B(t), (3)

with,

X(t) =
(

Ac Aa Cc Ca R
)T ,

A =


K1 − D1 K1 α1K1 α2K1 0

K2 K2 − D1 α1k2 α2k2 0
qγ1 0 −D2 0 0

0 kγ1 τ −D3 0
γ1(1 − q) γ1(1 − k) γ2 γ2 −µ

 ,

B(t) =
(

0 0 0 0 0
)T ,

(4)

where, K1 = βS0
c

N , K2 = βθS0
a

N , D1 = γ1 + µ, D2 = γ2 + τ + µ + δ and D3 = γ2 + µ + δ.

Clearly, A is a Metzler (upper diagonal matrix is positive) matrix for the fact that both Sc(t)
and Sa(t) are non-negative, which shows subsystem (3) is a monotone system. As such, R5

+ is
invariant under the flow of subsystem (3). Hence, D is positively invariant and attract all the
positive solution of system (1). ■

Disease-free equilibrium point

To determine the disease-free equilibrium (DFE) point, we set the right-hand sides of system (1) to
zero and considered all the infection variables equal to zero, then we derived the DFE point (ϵ0)

of the model as

ϵ0 = (S0
c , S0

a , A0
c , A0

a , C0
c , C0

a , R0) =

(
πp

ϕ + µ
,

π(ϕ + µ − µp)
µ(ϕ + µ)

, 0, 0, 0, 0, 0
)

.

It implies that at the disease-free equilibrium, the total population N(t) is,

N0 =
π

µ
.
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Basic reproduction number

The basic reproduction number denoted by R0 refers to the average number of secondary infections
that occur when a single carrier is introduced into a completely susceptible host population. The
basic reproduction number is used for the stability analysis of system (1). The next generation
matrix technique as described by [25], is used to obtain the basic reproduction number which is
given by R0 = ρ(FV−1), where ρ is the spectral radius or the dominant eigenvalue of the next
generation matrix FV−1, as follows:

The matrices F (for the new infection terms) and V (for the remaining transition terms) associated
with model (1) are respectively given by:

F =



β S0
c

N0
β S0

c
N0

α1β S0
c

N0
α2β S0

c
N0

β θS0
a

N0
β θS0

a
N0

α1β θS0
a

N0
α2β θS0

a
N0

0 0 0 0

0 0 0 0

 , (5)

V =


D1 0 0 0

0 D1 0 0

−qγ1 0 D2 0

0 −kγ1 −τ D3

 , (6)

the inverse matrix of V is given as

V−1 =



1
D1

0 0 0

0 1
D1

0 0
qγ1

D1D2
0 1

D2
0

τ qγ1
D1D2D3

kγ1
D1D3

τ
D2D3

1
D3

 , (7)

FV−1 =



β S0
c

N0D1
+ α1β S0

c qγ1
N0D2D1

+ α2β S0
c τ qγ1

N0D2D1D3

β S0
c

N0D1
+ α2β S0

c kγ1
N0D1D3

α1β S0
c

N0D2
+ α2β S0

c τ

N0D2D3

α2β S0
c

N0D3

β θ S0
a

N0D1
+ α1β θ S0

a qγ1
N0D2D1

+ α2β θ S0
a τ qγ1

N0D2D1D3

β θ S0
a

N0D1
+ α2β θ S0

a kγ1
N0D1D3

α1β θ S0
a

N0D2
+ α2β θ S0

a τ

N0D2D3

α2β θ S0
a

N0D3

0 0 0 0

0 0 0 0


. (8)

We therefore obtain the basic reproduction number R0 by substituting S0
c , S0

a and N0 as

R0 =
β (ϕ + µ − µp)(kθα2D2γ1 + θD2D3) + βµp(τqα2γ1 + qα1D3γ1 + D2D3)

D1D2D3(ϕ + µ)
, (9)

where D1 = γ1 + µ, D2 = γ2 + τ + µ + δ and D3 = γ2 + µ + δ.
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R0 here is interpreted as the number of secondary infections produced by children with acute
HBV infection, adults with acute HBV infection, children with chronic HBV infection, and adults
with chronic HBV infection when a single acute or chronic infected individual introduced in the
absence of any control measure.

Local stability of the DFE

Theorem 2 Assume that no acutely infected individual developed chronic Hepatitis B (k = q = 0), then
the disease-free equilibrium, E0, of the model (1) is locally-asymptotically stable in D if R0 < 1, and
unstable if R0 > 1.

Proof We linearize the system by taking the Jacobian matrix of system (1) at the DFE as explained
in the Subsection 3,

J(ϵ0) =



−ϕ − µ 0 −βK1 −βK1 −βα1K1 −βα2K1 0

ϕ −µ −βθK2 −βθK2 −βθα1K2 −βθα2K2 0

0 0 βK1 − D1 βK1 βα1K1 βα2K1 0

0 0 βθK2 βθK2 − D1 θα1K2 θα2K2 0

0 0 qγ1 0 −D2 0 0

0 0 0 kγ1 τ −D3 0

0 0 γ1(1 − q) γ1(1 − k) γ2 γ2 −µ


, (10)

where K1 = µp
ϕ+µ , K2 = ϕ+µ(1−p)

ϕ+µ , reducing Eq. (10) into row-echelon form gives Eq. (11) below,

J(ϵ0) =



a11 0 a13 a14 a15 a16 0

0 a22 a23 a24 a25 a26 0

0 0 a33 a34 a35 a36 0

0 0 0 a44 a45 a46 0

0 0 0 0 a55 a56 0

0 0 0 0 0 a66 0

0 0 0 0 0 0 a77


, (11)

where

a11 = −(ϕ + µ), a13 = −βK1, a14 = −βK1, a15 = −βα1K1, a16 = −βα2K2, a22 = −µ(ϕ + µ),

a23 = −βϕK1 − βθk2(ϕ + µ), a24 = −βϕK1 − βθK2(ϕ + µ), a25 = −βϕα1K1 − βθα1K2(ϕ + µ),

a26 = −βϕα2K1 − βθα2K2(ϕ + µ), a33 = βK1 − D1, a34 = βK1, a35 = βα1K1, a36 = βα2K1,

a44 = β2θK1K2 − (βK1 − D1)(βθK2 − D1), a45 = β2θα1K1K2 − (βK1 − D1)(θα1K2),

a46 = β2θα2K1K2 − (βK1 − D1)(θα2K2), a55 = βγ1qK1a45 − a44[βγ1α1qK1 + D2(βK1 − D1)],

a56 = βγ1qK1a46 − βγ1α2qK1a44, a66 = a56(kγ1a45 − τa44)− a55(kγ1a46 − D3a44),

a77 = −µa33a44a55a66,
(12)
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and the eigenvalues are, 

λ1 = a77

λ2 = a66

λ3 = a55

λ4 = a44

λ5 = a33

λ6 = a22

λ7 = a11


, (13)

clearly, λ7 = a11 and λ6 = a22 are negative from Eq. (12). And for the other eigenvalues, we have,

a33 = βK1 − D1, (14)

substitute for K1,

⇒ βµp
ϕ + µ

− D1 < 0,

⇐⇒ βµp
D1(ϕ + µ)

< 1, (15)

so λ5 = a33 is negative if and only if Eq. (15) holds.

a44 = β2θK1K2 − (βK1 − D1)(βθK2 − D1), (16)

βK1D1 + βθK2D1 − D2
1 < 0,

⇐⇒ βK1

D1
+

βθK2

D1
< 1,

βµp
D1(ϕ + µ)

+
βθ(ϕ + µ(1 − p))

D1(ϕ + µ)
< 1, (17)

so, λ4 = a44 < 0 if and only if Eq. (17) is satisfied.

a55 = −a33a44D2,

a66 = −a44a55D3,

a77 = −µa33a44a55a66,

clearly, λ3 = a55 < 0, λ2 = a66 < 0, λ1 = a77 < 0, substituting k = q = 0 in the calculated basic
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reproduction number R0 of (9), the basic reproduction number reduced to

R0 =
βµp

D1(ϕ + µ)
+

βθ(ϕ + µ(1 − p))
D1(ϕ + µ)

, (18)

observed that Eqs. (17) and (18) are the same. Therefore, all the eigenvalues are negative, λi < 0 for
all i whenever R0 < 1. Hence applying the Routh-Hurwitz criterion as in [26, 27], the disease-free
equilibrium is locally asymptotically stable when R0 < 1. ■

Global stability of the DFE

Theorem 3 The disease-free equilibrium (DFE) ϵ0, of model (1), is globally-asymptotically stable (GAS) in
D if R0 < 1 and unstable if R0 > 1.

Proof To prove the theorem above, two conditions (H1) and (H2) as in [28] must be satisfied for
R0 < 1. The model can be written in the form;

dX1

dt
= F(X1, X2),

dX2

dt
= G(X1, X2); G(X1, 0) = 0,

(19)

where X1 = (S0
c , S0

a , R0) and X2 = (A0
c , A0

a , C0
c , C0

a ). Here X1 ∈ R3
+ denotes the uninfected popula-

tion and X2 ∈ R4
+ denoting the infected population. The disease-free equilibrium is now denoted

as, E0 = (X∗
1 , 0), where X∗

1 = (N0, 0). Now for the first condition, global asymptotic stability of
X∗

1 , gives

dX1

dt
= F(X1, 0) =

 πp − (ϕ + µ)S0
c

π(1 − p) + ϕS0
c − µS0

a
−µR0

 . (20)

Solving the ODE gives,

πp
(ϕ + µ)

−
πp

(ϕ + µ)
e−(ϕ+µ)t + S0

c (0)e
−(ϕ+µ)t = S0

c (t),

π(1 − p) + ϕS0
c

µ
−

π(1 − p) + ϕS0
c

µ
e−µt + S0

a(0)e
−µt = S0

a(t),

R0(t)e−µt = R0(t).

Now, clearly from system (1), we have, S0
c (t) + S0

a(t) + R0(t) → N0(t) as t → ∞ regardless of the
value of S0

c (t), S0
a(t) and R0(t). Thus, X∗

1 = (N0, 0) is globally asymptotically stable.
Next, for the second condition, that is G̃(X1, X2) = AX2 − G(X1, X2) ≥ 0,

A =


−(γ1 + µ) + β

N
β
N

βα1
N

βα1
N

βθ
N

βθ
N − (γ1 + µ) βθα1

N
βθα2

N
qγ1 0 −(γ2 + τ + µ + δ) 0

0 kγ1 τ −(γ2 + µ + δ)

 . (21)
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Matrix A is a Metziller matrix (the off-diagonal elements are non-negative).

G(X1, X2) =


β(A0

a+A0
c+α1C0

c +α2C0
a )

N0 S0
c − (γ1 + µ)A0

c
θβ(A0

a+A0
c+α1C0

c +α2C0
a )

N0 S0
a − (γ1 + µ)A0

a
qγ1 A0

c − (γ2 + τ + µ + δ)C0
c

kγ1 A0
a + τC0

c − (γ2 + µ + δ)C0
a

 . (22)

Then,

G̃(X1, X2) = AX2 − G(X1, X2) =


0
0
0
0

 .

That is,

G̃(X1, X2) =
[

0 0 0 0
]T .

It is obvious that G̃(X1, X2) = 0. ■

Endemic equilibrium point

As HVB enters into the population at least one of the infection classes is not empty. Finding the
explicit solution of equilibrium points in a model with a recruitment rate not equal to the death
rate in terms of the parameters of the model is tedious and sometimes inconvenient. As such,
equating the vector field of Eq. (1) to zero, the endemic equilibrium points in terms of the force of
infection are determined after algebraic manipulations. The set of endemic equilibrium point is
given by:

ϵ∗ = (S∗
c , S∗

a , A∗
c , A∗

a , C∗
c , C∗

a ),

where

S∗
c =

π p
λ∗ + µ + ϕ

,

S∗
a = −

π ((p − 1)λ∗ + (p − 1)µ − ϕ)

(λ∗ θ + µ) (λ∗ + µ + ϕ)
,

A∗
c =

λ∗ π p
(λ∗ + µ + ϕ) D1

,

A∗
a = −

λ∗ θ π ((p − 1)λ∗ + (p − 1)µ − ϕ)

D1 (λ∗ θ + µ) (λ∗ + µ + ϕ)
,

C∗
c =

qλ∗ π pγ1

D1D2 (λ∗ + µ + ϕ)
,

C∗
a = −

γ1λ∗ π ((((p − 1) λ∗ + (p − 1) µ − ϕ) kD2 − λ∗ pqτ) θ − µ pqτ)

D3D2D1 (λ∗ θ + µ) (λ∗ + µ + ϕ)
.

(23)
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Existence of the endemic equilibrium

Descartes’ rule of sign is used in concluding the existence. Now at endemic states, the force of
infection is given by,

λ∗ =
β(A∗

c + A∗
a + α1C∗

c + α2C∗
a )

N∗ ,

where,

N∗ = S∗
c + S∗

a + A∗
c + A∗

a + C∗
c + C∗

a ,

substituting for the endemic equilibrium points into the force of infection above gives λ∗ = 0.
equivalent to DFE which is stable, and the following quadratic equation in terms of λ∗,

Aλ∗2
+ Bλ∗ + C = 0,

where,

A =D2D3θ + D3Kθγ1(1 − P) + θγ1 pqτ + D2θγ1 pq,

B =D1D2D3(1 − p) + D2D3µθ(1 − p) + D3kµθγ1(1 − p) + D3kϕ + θγ1 + µpqτγ1

+ D1D2D3θp + D2D3µp + D2 pqµγ1 − β(D2D3θp

+ D2 pqθα1γ1 + D2D3θ(1 − p) + D3Kθα2γ1(1 − p) + pqτα2γ1),

C =D1D2D3µ(µ + ϕ)(1 − R0).

(24)

Clearly, since all the parameters are positive and 0 < p < 1, then A > 0. So there are four cases to
be considered depending on the sign of B and C.

Theorem 4 The endemic equilibrium (EE) of model (1) has a unique positive equilibrium whenever R0 > 1.

• Case 1: If B > 0 and C > 0 ⇐⇒ R0 < 1,
has no positive root, implying that the system has no positive equilibrium.

• Case 2: If B < 0 and C < 0 ⇐⇒ R0 > 1,
has one positive root, which implies that the system has a unique positive equilibrium.

• Case 3: If B > 0 and C < 0 ⇐⇒ R0 > 1,
has one positive root, which implies that the system has a unique positive equilibrium.

• Case 4: If B < 0 and C > 0 ⇐⇒ R0 < 1 and B2 − 4AC > 0,
has two positive roots, which implies that the system has two positive equilibria.

Note: Case 4 shows the possibility of the occurrence of subcritical or backward bifurcation. By
backward bifurcation we mean the coexistence of a stable disease-free equilibrium with a stable
endemic equilibrium when R0 < 1, when bifurcation occurs, R0 < 1 is only necessary but not
sufficient condition for the control of the disease. So we need to show that R0 < 1 is a sufficient
and necessary condition for the control of the disease under consideration.

Bifurcation analysis and local stability of the endemic equilibrium

The centre manifold theorem is used to prove the existence of backward bifurcation near R0 = 1,
Now let Sc = x1, Sa = x2, Ac = x3, Aa = x4, Cc = x5, Ca = x6 such that, N = x1 + x2 + x3 + x4 +

x5 + x6 so that in vector form, X = (x1, x2, x3, x4, x5, x6)
T and the model equation can be written
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in the form:

dX
dt

= ( f1, f2, f3, f4, f5, f6)
T,

such that,

dx1

dt
= f1 = πp − ϕx1 −

βx1(x3 + x4 + α1x5 + α2x6)

N
− µx1,

dx2

dt
= f2 = π(1 − p) + ϕx1 −

θβx2(x3 + x4 + α1x5 + α2x6)

N
− µx2,

dx3

dt
= f3 =

βx1(x3 + x4 + α1x5 + α2x6)

N
− (γ1 + µ)x3,

dx4

dt
= f4 =

θβx2(x3 + x4 + α1x5 + α2x6)

N
− (γ1 + µ)x4,

dx5

dt
= f5 = qγ1x3 − (γ2 + τ + µ + δ)x5,

dx6

dt
= f6 = kγ1x4 + τx5 − (γ2 + µ + δ)x6.

(25)

Now, the Jacobian of system (25) at the disease-free equilibrium is the same as the Jacobian of the
linearized system of (1) is given as,

J(ϵ0) =



−ϕ − µ 0 −βK1 −βK1 −βα1K1 −βα2K1

ϕ −µ −βθK2 −βθK2 −βθα1K2 −βθα2K2

0 0 βK1 − D1 βK1 βα1K1 βα2K1

0 0 βθK2 βθK2 − D1 θα1K2 θα2K2

0 0 qγ1 0 −D2 0

0 0 0 kγ1 τ −D3


, (26)

where K1 = µp
ϕ+µ , K2 = ϕ+µ(1−p)

ϕ+µ . It can also be shown that the basic reproduction number by
using |J(ϵ0)− λI| = 0 is given as,

R0 =
β (ϕ + µ − µp)(kθα2D2γ1 + θD2D3) + βµp(τqα2γ1 + qα1D3γ1 + D2D3)

D1D2D3(ϕ + µ)
.

Now, let β = β∗ be the bifurcation parameter near R0 = 1 implies that,

β∗ =
D1D2D3(ϕ + µ)

(ϕ + µ − µp)(kθα2D2γ1 + θD2D3) + µp(τqα2γ1 + qα1D3γ1 + D2D3)
,

the linearized system of Eq. (25) has simple zero eigenvalue and all other eigenvalues are non-
negative and therefore center manifold theorem can be applied to analyze the dynamics of β∗.
Now, let v and w be the corresponding left and right eigenvectors associated with the simple zero
eigenvalues of the Jacobian matrix of system (25) at β∗ such that vJ(ϵ0) = J(ϵ0)w = 0, where
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v = [v1, v2, v3, v4, v5, v6] and w = [w1, w2, w3, w4, w5, w6]
T and satisfying v.w = 1. Solving for

J(ϵ0)w = 0,

w1 =
−β∗[(D2 + qα1γ1)D2w3 + (D3 + kγ1)D2w4]

D2D3(ϕ + µ)
< 0,

w2 =
D2D3ϕw1 − β∗k1[(D2 + qα1γ1)D3w3 + (D3 + kγ1)D2w4]

D2D3
< 0,

w3 > 0, w4 > 0, w5 =
qγ1w3

D3
, w6 =

τγ1w3q + kγ1w4D2

D2D3
> 0,

and the left eigenvectors are;

v1 = 0, v2 = 0, v3 > 0, v4 > 0, v5 =
β∗(α1D3 + τα2)(k1V3 + k2v4)

D2
2 D3

,

and

v6 =
β∗α2(k1V3 + k2V4)

D3
.

Computation of a and b
V1 = V2 = 0, we only consider k = 3, 4, since, the second partial derivatives of f5 and f6

f3 =
β∗

N
(x3x1 + x4x1 + α1x5x1 + α2x6x1)− D1x3,

f4 =
β∗

N
(x3x2 + x4x2 + α1x5x2 + α2x2x6)− D1x4,

∂2 f3

∂x3∂x1
=

β∗

N
=

∂2 f3

∂x4∂x1
,

∂2 f3

∂x5∂x1
=

β∗α1

N
,

∂2 f3

∂x6∂x1
=

β∗α2

N
,

∂2 f4

∂x3∂x2
=

β∗θ

N
=

∂2 f4

∂x4∂x2
,

∂2 f4

∂x5∂x2
=

β∗θα1

N
,

∂2 f4

∂x6∂x2
=

β∗θα2

N
,

a = v3

6∑
i,j=3

wiwj
∂2 f3

∂xi∂xj
(0, 0) + v4

6∑
i,j=3

wiwj
∂2 f4

∂xi∂xj
(0, 0),

a =
β∗

N0 (w1v3 + θw2v4)(w3 + w4 + w5 + w6) < 0,

b = v3

6∑
i=3

wi
∂2 f3

∂xi∂β∗ (0, 0) + v4

6∑
i=3

wi
∂2 f4

∂xi∂β∗ (0, 0),

b = (v3
S0

c
N0 + θv4

S0
a

N0 )(w3 + w4 + w5 + w6) > 0,

a < 0 and b > 0, thus, from the centre manifold theorem, we derive the following:

Theorem 5 The Hepatitis-B model undergoes a backward bifurcation at R0 = 1 and when β∗ < 0 changes
to β∗ > 0, the equilibrium changes its stability from stable to unstable. Corresponding a negative unstable
equilibrium becomes positive and asymptotically stable. Thus, the bifurcation that occurred is stable, and
hence, R0 < 1 is a necessary and sufficient condition for the Hepatitis B control.
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Global stability of the endemic equilibrium point

Theorem 6 The endemic equilibrium (EE), ϵ∗, of model (1) is globally asymptotically stable (GAS) if
R0 > 1 and unstable if R0 < 1.

Proof We construct a Lyapunov function with Goh-Voltera definition as follows,

V =

(
Sc − S∗

c − S∗
c ln

(
Sc

S∗
c

))
+

(
Sa − S∗

a − S∗
a ln

(
Sa

S∗
a

))
+

(
Ac − A∗

c − A∗
c ln

(
Ac

A∗
c

))
+

(
Aa − A∗

a − A∗
a ln

(
Aa

A∗
a

))
+ W1

(
Cc − C∗

c − C∗
c ln

(
Cc

C∗
c

))
+W2

(
Ca − C∗

a − C∗
a ln

(
Ca

C∗
a

))
.

(27)

Taking the derivative of V with respect to t, we have

V
′
=

(
1 −

S∗
c

Sc

)
S

′
c +

(
1 −

S∗
a

Sa

)
S

′
a +

(
1 −

A∗
c

Ac

)
A

′
c +

(
1 −

A∗
a

Aa

)
A

′
a

+W1

(
1 −

C∗
c

Cc

)
C

′
c + W2

(
1 −

C∗
a

Ca

)
C

′
a,

(28)

substituting for S
′
c, S

′
a, A

′
c, A

′
a, C

′
c, C

′
a gives,

V
′
=

(
πp − λSc − µSc −

S∗
c

Sc
(πp − λSc − µSc)

)
+

(
π(1 − p)− θλSa − µSa −

S∗
a

Sa
(π(1 − p)− θλSa − µSa)

)
+

(
λSc − (γ1 + µ)Ac −

A∗
c

Ac
(λSc − (γ1 + µ)Ac)

)
+

(
θλSa − (γ1 + µ)Aa −

A∗
a

Aa
(θλSa − (γ1 + µ)Aa)

)
+

(
qγ1 Ac − (γ2 + µ + δ)Cc −

C∗
c

Cc
(qγ1 Ac − (γ2 + µ + δ)Cc)

)
+

(
kγ1 Aa − (γ2 + µ + δ)Ca −

C∗
a

Ca
(kγ1 Aa − (γ2 + µ + δ)Ca)

)
=

(
λS∗

c + µS∗
c − µSc −

S∗2
c

Sc
− λµ

S∗2
c

Sc
+ λS∗

c + µS∗
c

)
+

(
θλS∗

a + µS∗
a − θλSa − µSa − θλ

S∗2
a

Sa
− µ

S∗2
a

Sa
+ θλS∗

a + µS∗
a

)
+

(
λSc − (γ1 + µ)Ac − λ

A∗
c

Ac
Sc + (γ1 + µ)A∗

c

)
+

(
θλSa − (γ1 + µ)Aa − θλ

A∗
a

Aa
Sa + (γ1 + µ)A∗

a

)
+ W1

(
qγ1 Ac − (γ2 + µ + δ)Cc − qγ1

C∗
c

Cc
Ac + (γ2 + µ + δ)C∗

c

)
+ W2

(
kγ1 Aa − (γ2 + µ + δ)Ca − kγ1

C∗
a

Ca
Aa + (γ2 + µ + δ)C∗

a

)
.

Solving for W1 and W2 by equating the coefficient of Ac, Aa, Cc, Ca to zero, we have, W1 = γ1+µ
qγ1
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and W2 = γ1+µ
kγ1

.

V
′
= 2λS∗

c − λ
S∗2

c
Sc

+ 2µS∗
c − µSc − µ

S∗2
c

Sc
+ 2θλS∗

a − θλ
S∗2

a
Sa

+ 2µS∗
a − µSa − µ

S∗2
a

Sa

− λ
A∗

c
Ac

Sc + (γ1 + µ)A∗
c − θλ

A∗
a

Aa
Sa + (γ1 + µ)A∗

a − (
γ1 + µ

qγ1
)(γ2 + µ + δ)Cc

+

(
γ1 + µ

qγ1

)
(γ2 + µ + δ)C∗

c −

(
γ1 + µ

qγ1

)
qγ1

C∗
c

Cc
Ac −

(
γ1 + µ

kγ1

)
(γ2 + µ + δ)Ca

+

(
γ1 + µ

kγ1

)
(γ2 + µ + δ)C∗

a −

(
γ1 + µ

kγ1

)
kγ1

C∗
a

Ca
Aa.

From third and fourth equation of system (1) at the steady state, we obtain A∗
c (γ1 + µ) = λS∗

c and
A∗

a(γ1 + µ) = θλS∗
a , respectively, hence by simplification

V
′ ≤ λS∗

c

(
3 −

S∗
c

Sc
−

A∗
c Sc

AcS∗
c
−

C∗
c Ac

Cc A∗
c

)
+ θλS∗

a

(
3 −

S∗
a

Sa
−

A∗
a Sa

AaS∗
a
−

C∗
a Aa

Ca A∗
a

)
+ µS∗

c

(
2 −

S∗
c

Sc
−

Sc

S∗
c

)
+ µS∗

a

(
2 −

S∗
a

Sa
−

Sa

S∗
a

)
,

applying the arithmetic-geometric mean relation, we have(
3 −

S∗
c

Sc
−

A∗
c Sc

AcS∗
c
−

C∗
c Ac

Cc A∗
c

)
≤ 0,

(
3 −

S∗
a

Sa
−

A∗
a Sa

AaS∗
a
−

C∗
a Aa

Ca A∗
a

)
≤ 0,

and (
2 −

S∗
c

Sc
−

Sc

S∗
c

)
≤ 0,

(
2 −

S∗
a

Sa
−

Sa

S∗
a

)
≤ 0.

Hence, V
′
⩽ 0. The strict equality condition V

′
= 0 holds only at Sc = S∗

c , Ac = A∗
c , Cc = C∗

c , Sa =

S∗
a , Aa = A∗

a and Cc = C∗
c . Thus the endemic equilibrium ϵ∗ is the only invariant set of the model

1. Therefore, the result follows by applying Lasalle’s invariance principle [29]. Hence the endemic
equilibrium (EE) ϵ∗ of the model (1) is globally asymptotically stable (GAS). ■

Following Figure 2, Figure 3, Figure 4, and Figure 5 verify the analytical result of the global
stability of endemic equilibrium. The plots show that any change in the number of acutely or
chronically infected individuals provided the basic reproduction number is greater than unity, the
endemic equilibrium will return to its equilibrium points. Biologically this statement means that,
despite the small or big changes in the number of acute or chronic infected individuals Hepatitis B
will persist if the basic reproduction number is greater than one.
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Figure 2. Time series plot of the HBV infection
model for acutely infected children utilizing differ-
ent initial conditions with the parameter values in
Table 1.

Figure 3. Time series plot of the HBV infection
model for acutely infected adults utilizing differ-
ent initial conditions with the parameter values in
Table 1.

Figure 4. Time series plot of the HBV infection
model for chronically infected children utilizing
different initial conditions with the parameter val-
ues in Table 1.

Figure 5. Time series plot of the HBV infection
model for chronically infected adults utilizing dif-
ferent initial conditions with the parameter values
in Table 1.

4 Model fitting and parameter estimation

This section contains detailed information on the proposed model’s validation while using the
actual Hepatitis B Viral (HBV) cases obtained from [6] for the Free State, South Africa from 2015
to 2019. Having actual cases for a disease seems to have several benefits including the model’s
validation and optimizing the values of some biological parameters unknown at the beginning
of the analysis. Among several available tools for finding unknown parameters of an epidemic
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model, we have employed the method of nonlinear least-squares curve fitting. As shown by
Figure 6, the method has fitted the real HBV cases with very small errors that are also confirmed
by the residue plot shown in Figure 7. Figure 8 for the BoxWhisker plot shows the reasonable
agreement between actual HBV cases and those obtained from the simulations for Ac class of the
proposed model.

Figure 6. The best curve fitting for the real cases of the acutely infected children from the proposed model given
in system (1).

Figure 7. The residuals plot for the difference between the real cases of the acutely infected children and
simulations of the proposed model given in system (1).

Regarding the real and the predicted cases of HBV, the standard error and their respective
confidence intervals are computed in Table 2 wherein the standard error for each value is found to
be as minimum as 10−2 with 95% confidence interval.
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Figure 8. The BoxWhisker plot for the real cases of the acute infected children and simulations of the proposed
model given in system (1).

Table 2. Comparison between the number of real acute infected children and predicted ones with associated
standard errors and the confidence intervals.

Observed Predicted Standard Error Confidence Interval
3.81 3.81 0.0611803 {3.64014, 3.97986}
4.00 3.95873 0.0729167 {3.75628, 4.16118}
2.93 2.9618 0.0719738 {2.76197, 3.16163}
1.81 1.87615 0.065646 {1.69389, 2.05841}
1.18 1.09122 0.0625195 {0.917637, 1.2648}

The seven-point summary statistics included in Table 3 show that the predicted values from the
model (1) have reasonably acceptable results containing minimum, first quartile, median, mean,
third quartile, maximum, and standard error.

Table 3. Summary statistics for the real data, and the predicted data points obtained under simulations of the
model (1) for the acutely infected children Ac.

Data Min. 1st Qu. Median Mean 3rd Qu. Max. SD
Actual cases 1.18 1.65 2.93 2.75 3.86 4.00 1.23

Predicted cases 1.09 1.68 2.96 2.74 3.85 3.96 1.24

The fitted parameters including π, β, γ1, and γ2 are tabulated in Table 4 wherein we have
obtained these values with very small standard error with p-value < 0.05 under 95% confidence
interval. For example, the contact rate (β) has fitted value equal to 9.3471 × 10−1 with standard
error of 1.67859 × 10−2 and p-value of 6.22714 × 10−7. Using the values given in this table, the
approximate value for the basic reproductive number is obtained as 1.15945 which presents the
reality of the scenario under the present analysis regarding the persistence of the HBV.
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Table 4. Baseline values and ranges for parameters of model (1).

Parameter Baseline (Range) Units Sources
µ 0.6384 (0.425, 0.745) year−1 Estimated by [24]
π 3.30 (2.39, 4.74) year−1 Fitted
p 0.02 (0.001, 0.057) year−1 Estimated by [24]
ϕ 0.2 (0.15, 0.38) year−1 Estimated by [24]
β 9.3471 × 10−1(8.88105 × 10−1, 9.81316 × 10−1) year−1 Fitted
q 0.71 (0.59, 0.87) year−1 Estimated by [16]
θ 0.8020 (0.325, 0.850) year−1 Fitted
k 0.31 (0.23, 0.47) year−1 Estimated by [16]

α1, α2 0.043, 0.004 (0.0023, 0.0678) year−1 Estimated by [16]
γ1 0.009 (0.0004, 0.02) year−1 Fitted
γ2 0.03 (0.015, 0.054) year−1 Fitted

δ 0.08 (0.052, 0.089) year−1 Estimated by [24]
τ 0.056 (0.043, 0.068) year−1 Estimated by [24]

5 Sensitivity analysis

In this subsection, we analyze the proposed HVB model using the forward sensitivity index in
relation to the reproduction number R0 with respect to the biological parameters of the model. This
method is used to determine the most sensitive parameters of the model and those parameters with
positive signs are regarded as the most sensitive for increasing the value of R0 while parameters
with negative signs are sensitive to the decrease of R0 [30, 31].
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Figure 9. Elasticity indices versus the parameters.

The optimization of the result is obtained by determining the sensitivity status of each parameter
and their impacts on the control of the spread of HBV infections in the population [27, 32]. We
denote by χ

R0
θ the normalized local sensitivity index of the R0 with respect to the θ, and is given

by

χ
R0
θ =

θ

R0
× ∂R0

∂θ
. (29)
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We get the indices below for the R0 with respect to parameters shown in Table 4. The results given
in the forward normalized sensitivity indices Table 5 with a Bar chart pictorial representation
revealed that the top and most sensitive epidemiological parameters to effectively contain the
spread of the HBV viral infection in order of preference are: (i) β followed by (ii) θ, respectively.
Recall that the parameter θ is a modification parameter reducing the susceptibility of adult
individuals and therefore it goes with the immune system of the person, so without loss of
generality, we assumed θ to be constant. The parameter β is therefore prioritized in order to
control the spread of HBV viral infection in South Africa.

Table 5. Forward normalized sensitivity indices.

Parameter Elasticity Indices Values of the Elasticity index
θ χ

R0
θ 0.8521

q χ
R0
q 0.0910

k χ
R0
k 0.4600

β χ
R0
β 1.0000

α1 χ
R0
α1 0.0400

α2 χ
R0
α2 0.5900

τ χ
R0
τ 0.0500

γ1 χ
R0
γ1 -0.1000

δ χ
R0
δ -0.2000

ϕ χ
R0
ϕ -0.0630
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Figure 10. Contour and mesh plots of the basic reproduction number R0 in terms of modification parameter
decreasing the susceptibility of an adult θ and contact rate β as a response function.

6 Numerical simulations

This is the vantage point from which we may gain a comprehensive understanding of the model’s
behavior. The transmission dynamics of the governing model may be effectively explored using
numerical simulations with the aid of state variables of interest. We used numerical simulations
in this part to better understand the behavior of the model under investigation. We use the
parameters generated by the nonlinear minimum-squares fitting technique in the immediate
section to see different types of time series graphs.
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Figure 11. (a) Behavior of the state variables acutely infected children Ac, (b) acutely infected adult Aa.



Mustapha et al. | 147

Figure 11(a) and Figure 11(b) describe the behavior of acutely infected children and adults,
respectively. The graph raises due to susceptible children and adults becoming infected after
contracting the disease. It decreases due to the recovery and progression of acutely infected
individuals into chronic compartments.

0 1 2 3 4 5 6 7 8 9

t

0

10

20

30

40

50

60

C
c

(a)
0 1 2 3 4 5 6 7 8 9

t

0

10

20

30

40

50

60

70

80

90

100

C
a

(b)

Figure 12. (a) Behavior of the state variables chronically infected children Cc, (b) chronically infected adult Ca.

Figure 12(a) and Figure 12(b) describe the behavior of chronically infected children and adults,
respectively. The graph raises due to acutely infected children and adults developing chronic
infection. It decreases due to the recovery of infected individuals and death due to chronic
Hepatitis B.
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Figure 13. Behavior of the recovered individuals R.

Figure 13 describes the behavior of the recovered compartment. The graph raises due to the
recovery of acutely and chronically infected individuals. It decreases due to natural death.
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Figure 14. (a) Patterns of Ac and (b) Aa with different values of contact rate β.

Figure 14(a) and Figure 14(b) describe the behavior of acutely infected children and adults,
respectively, with different values of contact rate β. The graph raises when the contact rate is
greater. The more the contact rate, the more the number of acutely infected individuals.
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Figure 15. (a) patterns of Cc and (b) Ca with different values of contact rate β.

Figure 15(a) and Figure 15(b) describe the behavior of chronically infected children and adults,
respectively, with different values of contact rate β. The graph raises when the contact rate is
greater. The more the contact rate, the more the number of chronically infected individuals.
Figure 16(a) and Figure 16(b) describe the behavior of acutely infected children and adults,
respectively, with different values of progression rate τ from chronically infected children into
adult compartments. The graph raises in the case of chronically infected adults when the rate
τ is larger, and falls when the rate τ is smaller in the case of chronically infected children. The
more the progression rate, the more the number of chronically infected adults and the smaller the
number of chronically infected adults.
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Figure 16. (a) Patterns of Cc with different values of progression rate of chronically infected children that grow
into adult τ, (b) Patterns of Ca with different values of progression rate of chronically infected children that grow

into adult.

7 Discussion and conclusion

An age-structured deterministic model consisting of a system of ordinary differential equations
is designed to study the transmission dynamics of Hepatitis B. The analysis of the model shows
that it undergoes backward bifurcation, a phenomenon in which a stable disease-free equilibrium
coexists with stable endemic equilibrium (EE) when the basic reproduction number is less than
one (i.e. R0 < 1). The bifurcation analysis performed shows that the endemic equilibrium is
locally asymptotically stable. Further analysis shows that the disease-free equilibrium is globally
asymptotically stable when R0 < 1 and unstable when R0 > 1 while the endemic equilibrium
is globally asymptotically stable when R0 > 1 and unstable when R0 < 1. We have estimated
the model parameters using the nonlinear least-squares curve fitting method having a very
minimum standard error with p-value < 0.05 under 95% confidence interval with the help of
real data from South Africa. The data is extracted from [6]. The global stability of the endemic
equilibrium is verified numerically in Figure 2 to Figure 5 using the fitted parameters. The graphs
show the persistence of the disease with R0 = 1.15945 using the parameter values in Table 4.
The forward normalized sensitivity index technique is employed for sensitivity analysis. We
obtained the most sensitive parameters that are essential for the control of the spread of Hepatitis
B infection as summarized in Table 5 where the contact rate β has the highest elasticity index
value of 1.0. Finally, we obtained some numerical simulation results describing the pattern of
movement from one compartment to another. Figure 11 described the pattern of Ac and Aa,
Figure 12 described the pattern of Cc and Ca and Figure 13 described the pattern of the recovered
compartment. The simulation has also shown the effect of the most sensitive parameters on the
model as described in Figure 14, Figure 15, and Figure 16. Figure 14 and Figure 15 show that
the disease transmission decreases as the contact rate β decreases. Figure 16 shows that as the
progression rate of chronic children into chronic adult τ decreases, the number of chronically
infected children will increase while that of chronic adults will decrease. We suggested that to
eradicate Hepatitis B in South Africa, there is a need to minimize the contact between the infected
individuals and susceptible ones apart from their current control strategy of routine immunization.
Acutely infected individuals should be guided on care to avoid their progression into chronically
infected individuals. Treatment of chronically infected individuals should be emphasized to avoid
the growth of chronically infected children into adults with the disease.
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