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Abstract

Cholera is an acute diarrheal disease caused by Vibrio cholera, its prevalence occurs in almost all
the continents of the world, annually there are about 1.3 to 4.0 million cases of cholera and 21, 000
to 143, 000 deaths worldwide. In this paper, we propose a deterministic model for the transmission
dynamics of cholera to assess the impact of vaccines in decreasing the spread of cholera infection in
Nigeria. Moreover, we develop an optimal control strategy, in which we consider personal hygiene
a control strategy on infection class, with u(t) as the control function. The best values of the fitting
parameters have been obtained using least square minimization to validate the model with the help
of experimental data obtained from Nigeria. We perform sensitivity analysis to determine the key
parameters that have impacts on the control of the spread of cholera infections in the population. In
addition, the numerical simulation of the model reveals that the use of vaccines and personal hygiene
will effectively control the spread of cholera infection.
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1 Introduction

Cholera is a short-term (acute) life-threatening disease caused by a bacterium called Vibrio cholera.
The disease attracts the intestine and brings about diarrhea. Cholera exists in different serogroups,
but only 01 and 0139 cause outbreaks [1]. Diarrhea is the main symptom of cholera and it is
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sometimes called acute diarrheal disease. The diarrhea is accompanied by severe dehydration
and can lead to death within hours. The disease is asymptomatic between 12 hours to 5 days
after its invasion into humans through ingesting contaminated food or water. However, infected
individuals can still shed the bacterium (which can contaminate the environment) and can infect
others [2]. People with low immunity “such as malnourished children or people living with HIV
have a higher tendency to develop the infection [3].
Cholera is transmitted through ingestion of food or water contaminated with the Vibro cholera
bacterium (which implies that unhygienic environments are more susceptible to cholera). The
disease can also be transmitted directly through human-to-human contact such as shaking hands
[4]. To avoid its transmission, proper sanitation of the environment is required to ensure clean
water and food. In addition to ensuring proper hygiene, vaccination is used for the prevention of
its prevalence [2]. The disease treatment is by quick replacement of the fluids and salt lost through
diarrhea (Oral rehydration solution (ORS) is used) [2]. Recovered cholera patients acquired immu-
nity that prevent them from being infected for many years [5].
Cholera prevalence occurs in almost all the continents of the world. It has been estimated that there
are 1.3 to 4.0 million cases of cholera, and 21, 000 to 143, 000 deaths worldwide due to cholera
annually [2]. Its pandemic started in 1961 in Indonesia, and it then spread into Europe, the South
Pacific, and Japan at the end of 1970s. The prevalence reached South America in 1990s. Previously,
there are many cholera outbreaks in India (2007), Congo, Zimbabwe and Iraq (2008), Zimbabwe
and Vietnam (2009), Nigeria and Haiti (2010). In the year 2010 alone, it is estimated that 3–5
million people were infected with cholera which causes the death of 100, 000–130, 000 people
worldwide [6]. In Nigeria, cholera is a recursive disease that occurs annually (during a rainy
season). Its first epidemic occurred in 1970 and 1990 with high epidemics in 1992, 1995, 1996 and
1997. There were 37,289 cholera cases and the disease caused 1, 434 deaths between January and
October 2010 as reported by the Federal Ministry of Health. Furthermore, in 2011, 22, 797 cases
of cholera with 728 deaths were reported. Nigeria Centre for Disease Control (NCDC) reported
42,466 suspected cases with 830 deaths in 2018 [1]. The NCDC also reported in November 21, 2021
that Nigeria recorded 103, 589 cholera infections and 3, 566 deaths which is greater than the death
caused by covid − 19 (2977) in the same year [7].
Many mathematical models have been developed to study the transmission dynamic of cholera
infection and come up with different measures, some of these are: the study by [8] shows that
effective control of the epidemic can easily be achieved through vaccination, public health educa-
tion, and treatment. Hove-Musekwa et al., (2011) recommended that nutritional issues should be
addressed in poor communities affected by cholera to reduce the burden of the disease. In order to
avoid the cholera outbreak in China, Sun et al. (2017) stated that it might be better to increase the
immunization coverage rate and make an effort to improve environmental management, especially
for drinking water. Motivated by the aforementioned works, we developed a mathematical model
of cholera infection with vaccination as a control measure.

2 Model description

We developed a mathematical model to study the spread of cholera in a human population at
time t > 0, denoted by N(t), and subdivided into four compartments: Susceptible individuals
S(t) (those who are healthy but can acquire the infection) with the infection rate λ; Vaccinated
individuals V(t) (those who take the vaccine) but some can acquire the infection at a slower rate
σλ; Infected individuals I(t) (those who are infected with the disease) but can obtain immunity
with recovery rate ϕ and Recovered individuals R(t) (those who recovered from the disease).
The susceptible individuals are vaccinated at a constant rate ω, while the vaccine wears off at a
rate ψ. The population of the bacteria is denoted by M(t) (the concentration of Vibrio Cholerae
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(V.C) in contaminating the environment). We use ξ and θ to denote the rate of disinfection
and the decay rate of V.C, respectively. We split the transmission rate into two parts. One is
environment-to-human transmission rate β1; and the other is human-to-human transmission rate
β2. The parameter k represents the concentration of the V.C in contaminating the environment
which yields 50% chance of acquiring the cholera disease (half-saturation constant of the bacteria
population). The force of infection denoted by λ (the rate at which the susceptible individuals
acquire the infectious disease) is given by:

λ =
β1 M

k + M
+ β2 I.

Figure 1. Schematic diagram of the model (1). Solid arrows indicate transitions and expressions next to arrows
show the per ca-pita flow rate between compartments

According to the diagram above, the dynamics of cholera can be described by the following system
of five differential equations.

dS
dt

= Π − λS − (µ + ω)S + ψV,

dV
dt

= ωS − (µ + ψ)V − σλV,

dI
dt

= λS − (µ + δ + ϕ)I + σλV,

dR
dt

= ϕI − µR,

dM
dt

= αI − (ξ + θ)M.

(1)
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Table 1. Interpretation of the state variables and parameters used in the model (1)

Variable Description
N Total human population
S Susceptible individuals
I Infected individuals

V Vaccinated individuals
R Recovered individuals

M Concentration of V.C in contaminating the environment
Parameter

Π Recruitment rate
µ Natural death rate
λ Force of infection

β1 Environment to human transmission rate
β2 Human to human transmission rate

k Concentration of V.C in the environment
σ Parameter for decrease of infectiousness in V
δ V.C induced death rate
ϕ Recovery rate
α Rate of human contribution to V.C

θ, ξ Rate of disinfection in the environment and decay rate of V.C respectively
ω Vaccination rate
ψ Vaccine withdrawing period

3 Basic properties of the model

Boundedness and positivity of solutions

The model consists of the human population and bacteria population (V.C). As such the variables
and parameters of the model are non-negative.

Theorem 1 The solution of the model (1) within the invariant region are feasible for all t > 0,

Ω =

{
(S(t), I(t), V(t), R(t), M(t)) ∈ R5

+ : N ≤ π

µ
, M ≤ α

(ξ + θ)2

}
.

Proof It suffices to show that the solution of the model (1) initiated in Ω does not leave the
region i.e R5

+ is positively invariant under the flow of system (1). [9, Theorem 2.1.5]. From the
boundedness of Ω it follows that S(0) > 0, I(0) > 0, V(0) > 0, R(0) > 0, and M(0) > 0. Suppose
S(0) and V(0) are not positive, then there exists a time t̃ > 0, such that S(t) > 0 and V(t) > 0 for
t ∈ [0, t̃), and S(t̃) = V(t̃) = 0. Now, consider the second, and the last part of model (1), we have

dI(t)
dt

≥ −(µ + δ + Φ)I(t), for t ∈ [0, t̃),

dM(t)
dt

≥ −(ξ + θ)M(t), for t ∈ [0, t̃),

so that I(0) > 0, and M(0) > 0 for t ∈ [0, t̃). Now, from the first and the second part of the model
(1), we have

dS(t)
dt

≥ −(µ + λ + ω)S(t), for t ∈ [0, t̃),

dV(t)
dt

≥ −(µ + ψ)V(t), for t ∈ [0, t̃).
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Now, S(0) > 0, and V(0) > 0 which contradict our hypothesis S(t̃) = V(t̃) = 0. Therefore S(t),
and V(t) are positive. To determine the positivity of the remaining variables we can write the
remaining part of the model (1) excluding first and the second equation in matrix form as follows:

dY(t)
dt

= QY(t) + B(t), (2)

with

Y(t) =
(

I R M
)T ,

Q =

 −(µ + δ + Φ) 0 0
Φ µ 0
α 0 −(ξ + θ)

 ,

B(t) =
(

0 0 0
)T .

(3)

The above matrix Q is called a Metzler matrix for the fact that S(t) is non-negative. Thus,
subsystem (2) is a monotone system [10]. Hence we can conclude that R4

+ is invariant under the
flow of subsystem (2). Therefore, R5

+ is positively invariant under the flow of system (1).

Disease-free equilibrium

In the absence of the disease, the model system (1) has a disease-free equilibrium which is obtained
by setting the right-hand side of the model equations to zero. Thus we have,

ϵ0 = (S0, V0, I0, R0, M0) =

(
(µ + ψ)π

µ (µ + ω + ψ)
,

ω π

µ (µ + ω + ψ)
, 0, 0, 0

)
.

Now, the total population at disease-free equilibrium N(t) is,

N0 ≤ π

µ
.

Basic reproduction number

The next generation operator method described by [11], was used to determine the basic repro-
duction number denoted by R0 = ρ(FV−1). The matrices F for the new infection terms and V for
the remaining transition terms are given by:

F =

 Π β2(µ+ψ)
(µ+ω)(µ+ψ)−ψ ω

+ Π β2ω
(µ+ω)(µ+ψ)−ψ ω

Π β1(µ+ψ)
k((µ+ω)(µ+ψ)−ψ ω)

+ Π β1σ ω
k((µ+ω)(µ+ψ)−ψ ω)

0 0

 , (4)

V =

[
µ + δ + ψ 0

−α ξ + θ

]
, (5)
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V−1 =

 1
µ+δ+ϕ 0

α
(µ+δ+ϕ)(ξ+θ)

1
ξ+θ

 , (6)

FV−1 =

 Π ((β2(ξ+θ)k+α β1)µ+β2ψ (ξ+θ)k+β1α (ω σ+ψ))
kµ (µ+ψ+ω)(µ+δ+ϕ)(ξ+θ)

Π β1(ω σ+µ+ψ)
kµ (µ+ψ+ω)(ξ+θ)

0 0

 . (7)

We determine the basic reproduction number as follows:

R0 =
Π ((β2 (ξ + θ) k + α β1) µ + β2ψ (ξ + θ) k + α β1 (ω σ + ψ))

kµ (µ + ψ + ω) (µ + δ + ϕ) (ξ + θ)
.

Using the proof from Theorem 2 of [11], if the reproduction number is less than one, the disease-
free equilibrium point is locally stable and the population can not be invaded by the disease.
Hence, the proof of the following theorem holds.

Theorem 2 The disease-free equilibrium (DFE) T0, of the model (1), is locally-asymptotically stable (LAS)
in Ω if R0 < 1, and unstable if R0 > 1.

Interpretation of the basic reproduction number

The threshold parameter (R0) is interpreted as the number of secondary cases produced by a
single cholera-infected individual in a completely susceptible population.

Global stability of disease-free equilibrium

Theorem 3 The disease-free equilibrium (DFE) ϵ0, of the model (1), is globally-asymptotically stable (GAS)
in Ω if R0 < 1, and unstable if R0 > 1.

Proof To show the GAS of DFE, the two condition [F1], and [F2] for R0 < 1, need to be satisfied
[12]. The system of (1) is re-write as.

dY1

dt
= F1(Y1, Y2),

dY2

dt
= F2(Y1, Y2) : F2(Y1, 0) = 0,

(8)

where Y1 = (S0, V0, R0), and Y2 = (I0, M0), with the elements of Y1 ∈ R3
+, representing the

uninfected population and the elements of Y2 ∈ R2
+, representing the infected population.

The DFE is now denoted as, ϵ0 = (Y∗
1 , 0), where Y∗

1 = (N0, 0).
Now for the first condition, that is GAS of Y∗

1 , gives

dY1

dt
= F1(Y1, 0) =

 π − (µ + ω)S0 + ψV
ωS − (µ + ψ)V0

−µR

 . (9)
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Solving the linear differential equations gives,

S0(t) =
π + ψV
(µ + ω)

−
π + ψV
(µ + ω)

e−(µ+ω)t + S0(0)e−(µ+ω)t,

V0(t) =
ωS

µ + ψ
−

ωS
µ + ψ

e−(µ+ψ)t + V0(0)e−(µ+ψ)t,

R0(t) = R(0)e−(µ)t.

Now, it is easy to show that S0(t) + V0(t) + R0(t) → N0(t), as t → ∞, regardless of the value of
S0(t), V0(t) and, R0(t). Thus, Y∗

1 = (N0, 0) is globally asymptotically stable.
Furthermore, for the second condition, that is F̃2(Y1, Y2) = BY2 − F2(Y1, Y2), gives:

B =

(
β2S − (µ + δ + ϕ) + σβ2V β1Sk

(k+M)2 +
σβ1Vk
(k+M)2

α −(ξ + θ)

)
. (10)

This is a Metziller matrix

F2(Y1, Y2) =

(
λS − (µ + δ + ϕ)I + σλV

αI − (ξ + θ)M

)
. (11)

Then,

F̃2(Y1, Y2) = BY2 − F2(Y1, Y2) =

[
0
0

]
.

Thus, we have

F̃2(Y1, Y2) =
[

0 0
]T .

It is clear that F̃2(Y1, Y2) = 0. Hence, the two conditions are satisfied, guaranteeing the global
stability of the disease-free equilibrium.

Endemic equilibrium point

The conditions I ̸= 0 and M ̸= 0 imply that the cholera invades the population. As such, setting
the vector field of (1) to zero, we obtain the equilibrium point at the endemic state as:

ϵ∗ = (S∗, V∗, I∗, R∗, S∗),

S∗ =
π (σ λ + µ + ψ)

σ λ2 + σ λ µ + σ λ ω + µ λ + λ ψ + µ2 + µ ω + µ ψ
,

V∗ =
π ω

σ λ2 + σ λ µ + σ λ ω + µ λ + λ ψ + µ2 + µ ω + µ ψ
,

I∗ =
λ π (σ λ + σ ω + µ + ψ)

(µ + δ + ϕ) (σ λ2 + σ λ µ + σ λ ω + µ λ + λ ψ + µ2 + µ ω + µ ψ)
,

R∗ =
ϕ λ π (σ λ + σ ω + µ + ψ)

µ (µ + δ + ϕ) (σ λ2 + σ λ µ + σ λ ω + µ λ + λ ψ + µ2 + µ ω + µ ψ)
,

(12)
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M∗ =
α λ π (σ λ + σ ω + µ + ψ)

(ξ + θ) (µ + δ + ϕ) (σ λ2 + σ λ µ + σ λ ω + µ λ + λ ψ + µ2 + µ ω + µ ψ)
.

Existence of the endemic equilibrium

To determine the existence of the endemic equilibrium, Descartes’s rule of sign is used. Now the
force of infection at the endemic state is given by,

λ∗ =
β1 M∗

k + M∗ + β2 I∗.

Substituting the endemic equilibrium points into the above force of infection gives λ∗ = 0, and
the polynomial of order four is obtained in the form of λ∗

Aλ∗4
+ Bλ∗3

+ Cλ∗2
+ Dλ∗ + E = 0,

where

A = k(ξ + θ)(µ + δ + ϕ)2σ2 + Πα(µ + δ + ϕ)σ2,

B = 2k(ξ + θ)(µ + δ + ψ)2(σµ + µ2 + µω + µϕ)σ + Πασ(µ + δ + ϕ)(σµ + 2σω + 2µ + 2ψ)

− Παβ1σ2(µ + δ + ϕ)− Πβ2αk(ξ + θ)(µ + δ + ϕ)σ2 − Π2β2ασ2,

C = k(ξ + θ)(µ + δ + ϕ)[2σ(µ2 + µω + µψ) + (σµ + σω + µ + ψ)2] + Πα(µ + δ + ϕ)[σ(µ2 + µω + µψ)

+ (σω + µ + ψ)(σµ + σω + µ + ψ)]− Παβ1(µ + δ + ϕ)(σµ + 2σω + 2µ + 2ψ)σ

− Πβ2k(ξ + θ)(µ + δ + ϕ)(σµ + 2σω + 2µ + 2ψ)σ − 2Π2αβ2(σω + µ + ψ)σ,

D = 2k(ξ + θ)(µ + δ + ϕ)2(σµ + σω + µ + ψ)(µ2 + µω + µψ) + Παβ1(µ + δ + ϕ)[(µ2 + µω + µψ)σ

+ (σω + µ + ψ)(σµ + σω + µ + ψ)]− Πβ2k(ξ + θ)(µ + δ + ϕ)[(µ2 + µω + µψ)σ

+ (σω + µ + ψ)(σµ + σω + µ + ψ)]− Π2αβ2(σω + µ + ϕ)2,

E = k(ξ + θ)(µ + δ + ϕ)2(µ2 + µω + µψ)2[1 − R0].
(13)

Global stability of endemic equilibrium

Theorem 4 If R0 > 1, the endemic equilibrium ϵ∗ is globally asymptotically stable.

Proof We construct a Lyapunov function

F =

(
S − S∗ − S∗ln

(
S
S∗

))
+

(
V − V∗ − V∗ln

(
V
V∗

))
+

(
I − I∗ − I∗ln

(
I
I∗

))
+

(
R − R∗ − R∗ln

(
R
R∗

))
+

(
M − M∗ − M∗ln

(
M
M∗

))
.

(14)

The derivative of along the solution of model Eq. (1) is:

F ′ = Π − λS − (µ + ω)S −
S∗

S
(Π − λS − (µ + ω)S) + ωS − σλV − µV −

V∗

V
(ωS − σλV − µV)

+ λS − (µ + ϕ)I + σλV −
I∗

I
(λS − (µ + ϕ)I + σλV) + ϕI − µR −

R∗

R
(ϕI − µR)

+ αI − (ξ + θ)M −
M∗

M
(αI − (ξ + θ)M).
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At steady state:

Π = λS∗ + (µ + ω)S∗,

(µ + ϕ)I∗ = λS∗ + σλV∗,

ωS∗ = (µ + ψ)V∗ + σλV∗,

ϕI∗ = µR∗,

αI∗ = (ξ + θ)M∗.

Using the above relation we have:

F ′ ⩽ (µ + ω)S∗
(

2 −
S
S∗ −

S∗

S

)
+ λS∗

(
3 −

S∗

S
−

I
I∗

−
I∗

I

)
+ µV∗

(
2 −

V
V∗ −

V∗

V

)
+ σλV∗

(
3 −

I
I∗

−
I∗

I
−

V∗

V

)
+ µR∗

(
2 −

R
R∗ −

R∗

R

)
+ M∗(ξ + θ)

(
2 −

M
M∗ −

M∗

M

)
.

Since the arithmetic mean is greater than the geometric mean we have:(
2 −

S
S∗ −

S∗

S

)
⩽ 0,

(
3 −

S∗

S
−

I
I∗

−
I∗

I

)
⩽ 0,

(
2 −

V
V∗ −

V∗

V

)
⩽ 0,(

3 −
I
I∗

−
I∗

I
−

V∗

V

)
⩽ 0,

(
2 −

R
R∗ −

R∗

R

)
⩽ 0,

(
2 −

M
M∗ −

M∗

M

)
⩽ 0,

thus, we have that F ′ ⩽ 0 for R0 > 1, since the relevant variables in the equations for S(t)∗, V(t)∗,
I(t)∗, R(t)∗, M(t)∗ are at endemic steady state, it follows that these can be substituted into the
equations for S(t), V(t), I(t), R(t) and M(t). Therefore, the result follows by applying the LaSalle’s
invariance principle [13]. Hence the endemic equilibrium (EE) ϵ∗ of model (1) is globally asymp-
totically stable (GAS).

4 Designing the optimal control problem

Optimal control involves the determination of a piece-wise control variable u(t), and the associated
state variables x(t), that minimize the number of infectious individuals and the cost of controlling
the infection. In this paper, we use personal hygiene as a control strategy on the basic model of
cholera transmission which symbolizes u(t). Moreover, the controlled system is as follows:

dS
dt

= Π − u(t)λS − (µ + ω)S + ψV,

dV
dt

= ωS − (µ + ψ)V − u(t)σλV,

dI
dt

= u(t)λS − (µ + δ + ϕ)I + u(t)σλV,

dR
dt

= ϕI − µR,

dM
dt

= αI − (ξ + θ),

(15)

with S(0) = S0, V(0) = V0, I(0) = I0, R(0) = R0, M(0) = M0.
The single-objective function called the cost functional J[x(t), u(t)] to be minimized for our
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problem is given by:

J[x(t), u(t) =
∫ t f

0

(
aI +

1
2

wu2
)

dt, (16)

where a > 0, w > 0, and the terms aI and 1
2 wu2 represent the cost of infection and the cost of

personal hygiene, respectively. The condition associated with the cost is nonlinear, and therefore
we perceive the cost expression to be quadratic ( 1

2 wiu2
i ). u(t) is a piece-wise continuous in the set

of admissible control U = {(u(t)) : 0 ≤ u(t) ≤ 1}. The aim is to determine the optimal control u∗

such that

J(u∗) = min
(u(t))∈U

J(u(t)).

Thus, we show that an optimal control u∗ for system (15) exists. Also, we are to highlight that the
system (15) is bounded for finite time [14]. We extend to find the upper bound solutions (super
solutions) of S, V, I, R and M in model (15). Now, we consider the first equation of (15).

Existence of an optimal control on the system

We can prove the existence of optimal control by using the method used by [15]. For more details,
see [[16], Theorem 6, pp. 6].
Let Smax, be the super solution associated with S. Given that S(t) ≥ 0, and V(t) ≥ 0 as proved
in Theorem 1, then

dSmax

dt
= Π + ψV.

Similarly, Let Vmax, Imax, Rmax, and Mmax be the super solution associated with V, I, R, and M
respectively in (15). Given that I(t) ≥ 0, R(t) ≥ 0, and I(t) ≥ 0 then,

dVmax

dt
= ωS,

dImax

dt
= λS + σλV,

dRmax

dt
= ϕI,

dMmax

dt
= αS.

We can formulate a set of super solutions for system (15), by using the bounds. Denoting these
super solutions by S, V, I, R, and M such as:

dS
dt
dV
dt
dI
dt
dR
dt

dM
dt

 =


0 ψ 0 0 0
ω 0 0 0 0

λmax σλmax 0 0 0
0 0 ψ 0 0
0 0 α 0 0




S
V
I
R
M

+


π

0
0
0
0

 =


0
0
0
0
0

 . (17)

It shows that this is a linear system in finite time with bounded coefficients, hence, the super-
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solutions S, V, I, R, and M are uniformly bounded. Likewise, our original system is ultimately
bounded. It shows that an optimal control exists.

Hamiltonian and optimality of the system

We used Pontryagin’s Maximum Principle, which provides the necessary and sufficient conditions
for optimality, to prove the optimality of the system. To obtain that, we need to write in detail, the
Hamiltonian. The Hamiltonian (H) is generally symbolized as:

H = L + λ1
dS
dt

+ λ2
dV
dt

+ λ3
dI
dt

+ λ4
dR
dt

+ λ5
dM
dt

, (18)

where L is the Lagrangian, obtained from the objective function. The Hamiltonian associated with
the system under study is given by:

H =aI +
1
2

wu2 + λ1 (Π − u(t)λS − (µ + ω)S + ψV) + λ2 (ωS − (µ + ψ)V − u(t)σλV)

+λ3 (u(t)λS − (µ + δ + ϕ)I + u(t)σλV) + λ4 (ϕI − µR) + λ5 (αI − (ξ + θ)) ,
(19)

where λ1, λ2, λ3, λ4, and λ5 are called the adjoint variables to be determined. We now state the
following theorem.

Theorem 5 Given the optimal control set u(t) together with the corresponding solution, S, V, I, R, and M
which minimize J(u(t)) over U, then there exist adjoint variables λ1, λ2, λ3, λ4, and λ5 such that

dλ1

dt
= λ1 (u(t)λ + µ + ω)− λ2ω − λ3u(t)λ,

dλ2

dt
= −λ1ψ + λ2(µ + ψ + u(t)σλ)− λ3u(t)σλ,

dλ3

dt
= −a + u(t)β2[λ1S + λ2σV − λ3(S + σV)] + (µ + σ + ϕ)λ3 − ϕλ4 − αλ5,

dλ4

dt
= µλ4,

dλ5

dt
= −

β1k
(k + M)2 [Sλ1 + u(t)σλ2V − (S + σV)u(t)λ3] + (ξ + θ)λ5,

(20)

with transversality conditions λi(t f ) = 0, i = 1, ..., 5. Moreover,

u∗ = min
(

max
(

λ[λ1S + λ2σV − λ3(S + σV)]

w
, 0
)

, 1
)

. (21)

Proof As stated above, we applied the Pontraygin’s Maximum Principle to determine the adjoint
variables and the representations of the control functions Since the control functions exist. For the
adjoint variables we proceed as follows:

dλ1

dt
= −

∂H
∂S

= −[λ1(−u(t)λ − (µ + ω)) + λ2ω + λ3u(t)λ] = λ1 (u(t)λ + µ + ω)− λ2ω − λ3u(t)λ,

dλ2

dt
= −

∂H
∂V

= −[−λψ − λ2(µ + ψ + u(t)σλ) + λ3u(t)σλ]

= −λ1ψ + λ2(µ + ψ + u(t)σλ)− λ3u(t)σλ,
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dλ3

dt
= −

∂H
∂I

= −a + u(t)β2[λ1S + λ2σV − λ3(S + σV)] + (µ + σ + ϕ)λ3 − ϕλ4 − αλ5,

dλ4

dt
= −

∂H
∂R

= −(−µλ4) = µλ4,

dλ5

dt
= −

∂H
∂M

= −

(
−

λ1β1Sk
(k + M)2 −

λ2β1σu(t)Vk
(k + M)2 +

λ3β1u(t)Sk
(k + M)2 +

λ3β1σu(t)Vk
(k + M)2 − (ξ + θ)λ5

)
= −

β1k
(k + M)2 [Sλ1 + u(t)σλ2V − (S + σV)u(t)λ3] + (ξ + θ)λ5.

(22)
The illustrations of the controls is given by:

∂H
∂u(t)

= 0,

at u(t) = u(t)∗. Thus, the standard optimality argument is:

u(t)∗ = min
(

max
(

λ[λ1S + λ2σV − λ3(S + σV)]

w
, 0
)

, 1
)

. (23)

Based on the results of the above Theorem 5, which imply that after obtaining the terms for the
control function u∗, as well as the adjoint equations with their transversality conditions. We
suggest the optimal control terms for minimizing the spread of cholera transmission.

5 Model fitting and parameter estimation

This section is devoted to fitting some unavailable biological parameters of the proposed five-
dimensional epidemic model for cholera disease. It also assists one to have built confidence in
the model proposed, for the validation comes along. Such vital analyses are possible only when
some authentic information for the real experimental data for the disease under investigation is
available. When the data set for the actual infected cases is arranged, there comes the question
of a method that could be chosen for validation of the model with the help of an experimental
data set. It may be noted that several methods exist in the present literature for the fitting of
a nonlinear system of ordinary differential equations to the experimental results, we resort to
least-squares minimization. Under this method, the best values of the fitting parameters can
be obtained, including respective standard errors, statistical estimators (like the t-statistic and
p-value), and confidence intervals.
The available parameters of the model (1) are shown in Table 2 wherein their units and the sources
where-from they are taken are also mentioned. The two most important parameters β1, and β2 are
fitted with their best estimates as shown in Table 3 that accompanies some statistical estimators
as well. The p-values are < 0.05 with 95% confidence intervals for both estimated parameters,
including reasonably small standard error with acceptable t-statistic.
Moreover, the descriptive statistical measures for both real and predicted cases are shown in Table 4
where minimum, three quartiles, mean, maximum and standard deviation can be observed. Each
value from the real cases is found to have good agreement with what is obtained via simulations
for the I compartment including the smaller standard deviation in the predicted cases. It may
also be noted the interquartile range (IQR) for both cases is identical to be 5.7750 × 102, thereby
containing middle 50% of the data. Figure 2 further confirms the better agreement of the predicted
cholera cases with the real cases of the disease having R-squared (coefficient of determination)
value to be about 0.9376, including some residuals which are uniformly distributed as shown in
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multiple types of residuals in Figure 3. Some outliers are observed in the cholera cases (real and
predicted) as shown by the box and whisker plot in Figure 4.

Table 2. Baseline values, units, and references for parameters of model (1)

Parameter Baseline Units Sources
N 20616716 Persons [17]
µ 1/(11.4 × 52) week−1 [18]
Π 36.855 × µ week−1 [17]
k 1 Cells.mL−1 [18]
σ 0.127 week−1 [17]
δ 0.47 week−1 [17]
ϕ 1.4 week−1 [18]
α 2000 Cells.mL−1.week−1 [18]
θ 0.07 week−1 [18]
ξ 0.2331 week−1 [18]
ω 0.149 week−1 [8]
ψ 0.021 week−1 [8]

Table 3. The best fit parameters of the model (1) with the respective statistical estimators

Estimate Standard Error t-Statistic P-Value Confidence Interval
β1 4.3208 × 10−5 1.2003 × 10−5 3.5998 2.0480 × 10−3 (1.7991 × 10−5, 6.8425 × 10−5)
β2 7.0320 × 10−8 6.6760 × 10−9 1.0533 × 101 3.9918 × 10−9 (5.6294 × 10−8, 8.4345 × 10−8)

Table 4. The descriptive statistical summary for both real experimental data and the simulations predicted from
model (1) for I compartment

Min Q1 Q2 Q3 Mean Max SD
Real 4.600 × 101 7.800 × 101 2.540 × 102 6.330 × 102 5.535 × 102 2.127 × 103 6.406 × 102

Predicted 1.554 × 102 1.821 × 102 2.661 × 102 6.145 × 102 5.783 × 102 2.127 × 103 6.077 × 102

Figure 2. The best curve fitting for the real cases of the infected individuals from the proposed cholera model (1)
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Figure 3. The residuals for the real cases of the infected individuals from the proposed cholera model (1)

Figure 4. The comparison between real and predicted symptomatically infected individuals via BoxWhisker plot

Figure 5. Contour plots of the basic reproduction number in terms of parameter values
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6 Sensitivity analysis

In this section, the proposed cholera model associated with the basic reproduction number R0 with
respect to the biological parameters of the model is analyzed using the forward sensitivity index.
This method is applied to determine the most sensitive parameters of the model, parameters with
positive signs are considered the most sensitive for increasing the value of R0 while those with
negative signs are sensitive to the decrease of R0 [15, 19]. We determine the sensitivity status
of each parameter and their impacts on the control of the spread of cholera infections in the
population to obtain the optimal result [20, 21]. The normalized local sensitivity index of R0 with
respect to ξ is denoted by χ

R0
ξ which is written as

χ
R0
ξ =

ξ

R0
× ∂R0

∂ξ
, (24)

Table 5 shows the indices for R0 with respect to parameters.

Table 5. Forward normalized sensitivity indices

Parameter Elasticity Indices Values of the Elasticity index
β1 χ

R0
β1

1.0000

k χ
R0
k -1.0000

ω χ
R0
ω -0.4132

α χ
R0
α 1.0000

ξ χ
R0
ξ -0.7691

ϕ χ
R0
ϕ -0.7480

θ χ
R0
θ -0.2310

δ χ
R0
δ -0.2511

ψ χ
R0
β2

0.3822

σ χ
R0
σ 0.4546

7 Numerical scenarios

This is the section in which the behavior of the model is examined. The transmission dynamics
of the governing model may be effectively explored using numerical simulations with the aid of
state variables of interest. The numerical simulations are used to understand the behavior of the
model under investigation. The parameters generated by the nonlinear minimum-squares fitting
technique are used in the immediate section to determine different types of time series graphs.
S[0] = 20614589, I[0] = 2127, V[0] = 0, R[0] = 0, M[0] = 0.

8 Discussion and conclusions

This research describes a deterministic model for the transmission dynamics of cholera infection
incorporating vaccine and personal hygiene as strategies for controlling its spread. Analysis of
the model shows that the disease-free equilibrium is locally and globally asymptotically stable
when R0 < 1, and unstable when R0 > 1. Lyapunov function method is used in verifying the
stability of the endemic equilibrium point which is found to be globally asymptotically stable
when R0 > 1, and unstable when R0 < 1. The numerical simulations have been carried out using
the data published by the Nigeria Centre for Disease Control [17]. A detailed explanation of the
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Figure 6. Elasticity indices versus parameters
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method followed for the model fitting was described in Section 4. The fitted parameters of the
model are summarized in Table 2. The most sensitive parameters for controlling the spread of
cholera infection are determined using the forward sensitivity index method, these parameters
with their elasticity index are summarized in Table 5. Patterns of the susceptible, vaccinated,
infected, recovered and concentration of V.C in contaminating the environment are described
in Figure 7a, Figure 7b, Figure 8a, Figure 8b and Figure 9, respectively. The effect of the rate of
human contribution to V.C on the concentration of V.C in contaminating the environment is shown
in Figure 10a. The figure shows that a decrease in contaminating the environment can reduce envi-
ronmental transmission. Figure 10b shows that as the chance of becoming infected by vaccinated
individuals decreases, the number of infected individuals also decreases, which implies that the
disease control is dependent on the efficacy of the vaccine. Figure 11a shows that an increase in
the rate of disinfection of the environment results to the decrease in the environmental cholera
transmission. This implies that proper sanitation can control the environmental transmission of
V.C. Nevertheless, the optimal control described in Section 4 shows that proper sanitation will
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Figure 9. Behavior of the state variable Concentration of V.C in Contaminating the Environment M
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cost less and the same time effective in controlling the recurrence of the disease. So to eradicate
cholera disease in Nigeria, an efficient vaccine and proper sanitation should be enhanced.
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