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Abstract

This paper explores the co-infection dynamics of coronavirus disease 2019 (COVID-19) and Malaria
using Caputo-type fractional derivative to further understand the disease interactions and implement
effective control strategies. We demonstrate the positivity and boundedness of the solution through
Laplace transform techniques and establish the existence and uniqueness of the solution, showcasing
model stability using fractional-order stability theory. Simulation experiments across varying fractional
orders and disease classes offer insights into the co-infection dynamics. This is a new model and the
findings underscore the potential impact of control measures on mitigating co-infection under endemic
conditions. We conclude that infection with malaria does not guarantee immunity to COVID-19 and
infection with COVID-19 as well does not guarantee immunity to malaria.
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1 Introduction

Malaria is one of the most deadly diseases in the world’s history. It is caused by Plasmodium par-
asite [1] and transmitted to humans through the bites of infectious female Anopheles mosquitoes.
First discovered in 1880 in a military hospital in Algiers, Algeria [2], malaria has caused millions
of deaths in the past and still poses a great threat despite scientific investigations for hundreds of
years [3]. Although some countries in the world have attained an indigenous malaria-free state in
some particular years [4], most others still suffer the menace. In 2015, about 218 million malaria
cases were recorded worldwide with 453,000 cases of death [5]. Also, in 2019, about 229 million
cases of malaria with another estimated 409 thousand deaths were recorded in the world [6].
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According to the 2020 World Malaria Report, Nigeria’s malaria prevalence rate is at 303 per 1000
of its population [7]. The malaria prevalence rate is affected significantly by regions, rural-urban,
and socio-economic differences [8]. In Nigeria for instance, the malaria prevalence rate ranges
from 16 percent in the South-South and South-East regions to 34 percent in the North-West region
and 2.4 times in rural population than in urban population as reported by United States Agency
for International Development [9]. Also in socioeconomic groups, there is a seven times positive
difference between children in lower and higher socio-economic groups.
The COVID-19 pandemic has recently joined the league of most common deadly diseases in the
world. [10] described it as a positive-sense RNA virus that originated in the seafood market of live
animals with its first case traced to the city of Wuhan, China [11] in December 2019. COVID-19 is
highly contagious with three main routes; respiratory droplets, contact, and airborne [12]. Infected
individuals become symptomatic in stages, although its complete clinical manifestation is still
not clear as of the time of this research [13]. Symptoms include fever, dry cough, sore throat, loss
of smell and fatigue but in acute cases, it can lead to severe shortness of breath, hypoxia, and
death [12, 14]. Evidence suggests that older individuals and those with compromised immune
systems (from pre-existing conditions) are more likely to develop severe forms of COVID-19 [15].
In 2020, there were about 2,804,796 confirmed cases of COVID-19 in the world and 193,710
confirmed deaths [16]. Also, a total of 585,086,861 confirmed cases worldwide with a total of
6,422,914 deaths as of August 11, 2022 [17].
Malaria and COVID-19 are two life-threatening diseases that concurrently distort normal human
activities. Realizing the transmissible routes of COVID-19, the government placed restrictions in
markets, worship centers, airports, viewing centers, and other social gatherings to help reduce
unguided transmission of the disease. These unusual by-laws lasted for weeks and even months
interrupted routine malaria prevention and control measures and treatments, and by extension
increased new malaria cases and exacerbated untreated ones [18]. This suggests that COVID-
19 has caused havoc on every aspect of human life ranging from social, health, economy, and
education [19]. About 241 million malaria cases and 627 thousand deaths were recorded in
2020 worldwide as against the previous year, which makes about 14 million extra cases and 69
thousand extra deaths in the latter year [18]. Approximately two-thirds of these increased deaths
(47,000) were caused by the unavailability of malaria prevention, diagnosis and treatment linked
to COVID-19 disruptions [18]. Confirming the possible link between COVID-19 and Malaria [20]
found different types of Malaria associated with COVID-19 and stated that the prevalence of
Malaria among COVID-19 patients in Sudan is 32.4 percent.
Mathematical models have been so important in studying the behavioral pattern of infectious
diseases [21–28]. The mathematical model of malaria transmission was first developed by Ross [26].
His report showed that reducing the vector population to below a certain threshold can help
eradicate malaria. Chiyaka et al. [23] formulated a deterministic model with two latent periods in
the non-constant host and vector populations. While checking for ways to eradicate the disease,
they uniquely analyzed the spread of resistance and combined effects of intervention strategies
such as personal protection, vaccination and treatment with the assumption that the treated
individuals remain infectious for a while and discovered that personal control has a positive
impact on disease control. To ascertain the level of awareness of COVID-19 virus [28] studied
the mathematical model of COVID-19 which incorporates awareness programs and different
hospitalization strategies for mild and severe cases while [29] proposed an SEIQCRW transmission
model which adopts the SEIR model to study the current outbreak of COVID-19 in Nigeria with
nonlinear forces on infection. While considering the complexity of the disease [19] formulated
a stochastic model of COVID-19 under environmental white noise and recognized the random
nature of the input components. Several other mathematical models on COVID-19 are found in
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the literature, some of which are co-infection models [30–33].

Fractional differential equations have been widely used in recent years in modeling physical and
biological processes [33–41]. This is mainly because of some level of limitations exhibited by
mathematical models in integer-order derivatives. Although classical integer-order derivatives
yield good results, fractional-order derivatives are non-local operators and produce better and
more realistic results for a given real-life problem [41]. To further understand the different
fractional order operators and models, see [42–46]. Caputo fractional derivative as one of the
fractional differential operators is mostly used in modeling feasible real-life problems. This is
because of its convenience for the initial condition of the fractional differential equations. It has
long-term memory effects [21], and is very useful in translating higher fractional-order differential
systems to lower ones [47] with well-understood physical meaning compared to other fractional
operators [48]. [49] confirmed this when they analyzed the co-infection of HPV-CT in fractional
order using Caputo fractional derivative. Also [50] compared Caputo, Caputo-Fabrizio and
Atangana-Baleanu derivatives in their work. Their comparison shows that the Caputo derivative
presents better results in the form of stability. Other mathematical models with fractional-order
derivatives can be found in the works of [38, 51].

There are so many separate mathematical models in the literature on malaria and COVID-19
pandemic, however [27] started the work on the co-infection of the two diseases. They first
derived the sufficient conditions for the stability of the two diseases separately before considering
their entire equilibria where their findings suggest that using Malaria and COVID-19 protection
measures concurrently is best compared to dealing with them separately. [52] studied the fractional-
order mathematical model of COVID-19 and Malaria using the Atangana-Baleanu derivative
and discovered they could reduce the risk factor of getting COVID-19 after contracting Malaria
and vice versa. Still on the co-infection of COVID-19 and malaria [53] worked on the impact
of COVID-19 and Malaria co-infection on clinical outcomes and discovered that patients with
concurrent malaria and COVID-19 infection had greater mortality risk compared to mono-infection
with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Inspired by the above
literature, especially the work performed by [27] and the beautiful patterns and results gotten from
fractional derivatives as put together by [21, 41, 52, 54], we present this study of the co-infection
of COVID-19 and malaria in fractional order derivative using Caputo fractional operator since
the works of [27] and [53] are in integer derivative and [52] used Atangana-Baleanu fractional
derivative. We expect to obtain better results considering the stated advantages.

The ensuing parts of this paper (in sections) are as follows: Section 2 captures the preliminaries
where major definitions of the various fractional-order derivative operators are stated for easy and
better understanding of the whole work. In Section 3, we formulated the fractional mathematical
model and also carried out some vital analysis on the formulated model which included analysis
on the invariant domain, positivity, basic reproduction number, locally asymptotic stability,
existence and uniqueness of the solution and lastly the generalized Ulam-Hyers-Rassias stability.
In Section 4 we performed some numerical simulations and discussed our results therein. Lastly,
we concluded Section 5 based on our findings.

2 Preliminaries

This particular section presents some definitions of fractional derivatives and integrals that are of
great relevance to modeling real-life problems.



136 | Bulletin of Biomathematics, 2024, Vol. 2, No. 2, 133–161

Definition 1 [55]: The Caputo fractional derivative of order ω > 0 of a function f (t) of order ω ∈ R+ is
given as

CDω
t f (t) = Jn−ω

t Dn f (t) =
1

Γ(n − ω)

∫ t

0
(t − τ)n−ω−1 f (n)(τ)dτ, (1)

with the positive integer n given as n − 1 < ω ≤ n. As 0 < ω ≤ 1, the Caputo fractional derivative of
order ω > 0 above becomes

CDω
t f (t) =

1
Γ(1 − ω)

∫ t

0
(t − τ)−ω f ′(τ)dτ. (2)

Definition 2 [54]: Suppose that a function f ∈ C1(0, Y) is such that T > 0 and 0 < ω ≤ 1, then
Atangana-Baleanu derivative in Caputo sense is presented as

ABC
a Dω

t f (t) =
S(ω)

1 − ω

∫ t

a
Eω

(
−ω

(t − τ)ω

1 − ω

)
f ′(τ)dτ, t > 0, (3)

where S(ω) = (1 − ω) + ω
Γ(ω)

, denotes a normalization function satisfying S(0) = S(1) = 1.

Definition 3 [48]: The fractional integral of order ω > 0 of any function f ∈ C1(0, Y) is presented as

Jω
t f (t) =

1
Γ(ω)

∫ t

0
(t − τ)ω−1 f (τ)dτ, t > 0, (4)

as long as the integral part is integrable in R+. In other words, suppose that f (t) = P, where P is a
constant and results to;

Jω
t (P) =

1
Γ(ω)

∫ t

0
(t − τ)ω−1(P)dτ = P

tω

Γ(ω + 1)
. (5)

Definition 4 The solution of the Caputo fractional derivative can be written in the form of the Volterra
integral as given below;

f − f (0) =
1

Γ(ω)

∫ t

0
(t − τ)ω−1K (τ, f (τ)) dτ,

where the fractional order ω > 0.

Definition 5 [55]: The Laplace transform of Caputo fractional derivative (2) is presented as;

L {Dω
t f (t)} = sω f̃ (s)− sω−1 f (0), 0 < ω ≤ 1, (6)

with L as the Laplace transform operator.

3 Mathematical model formulation

The fractional-order model under this study is an interaction between human and vector popula-
tions. The human population at time t, denoted by NH(t) is sub-divided into seven distinct classes,
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namely; susceptible humans SH(t), susceptible humans vaccinated against COVID-19 VHC(t), in-
dividuals infected with malaria IHM(t), recovered individuals from malaria RHM(t), individuals
infected with COVID-19 IHC(t), recovered individuals from COVID-19 RHC(t) and individuals
co-infected with malaria and COVID-19 IMC(t). Therefore,

NH(t) = SH(t) + VHC(t) + IHM(t) + RHM(t) + IHC(t) + RHC(t) + IMC(t).

We considered the last stage of the mosquito life cycle and sub-divided the vector population at
time t, denoted by NV(t) into two distinct classes; susceptible vectors SV(t) and infectious vectors
with malaria IVM(t) hence the vector population is given by

NV(t) = SV(t) + IVM(t).

The model flow diagram is depicted in Figure 1 while the parameters of the model are described
properly in Table 1 below.
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Figure 1. Model diagram

The rate of recruitment into the susceptible human population is given by ΛH and that of the vector
population is given by ΛV. The parameter ϱH is the natural human mortality rate. It is assumed
that infectious individuals can contact Malaria and/or COVID-19 individuals at the rates ϑHM and
ϑHC, respectively. The interacting ability between the human and vector population warrants that
individuals can move from one class to another. When treated, humans infected with Malaria
move to the recovered class at the rate αHM. Also, the human-to-unvaccinatedhuman transmission
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Table 1. Description of variables and parameters in the above model equation

Variable Description
SH Susceptible humans
VHC Susceptible humans vaccinated against COVID-19
IHM Individuals infected with Malaria
RHM Recovered individuals from Malaria
IHC Individuals infected with COVID-19
RHC Recovered individuals from COVID-19
IMC Infectious individuals co-infected with Malaria and COVID-19
SV Susceptible vectors
IVM Infectious vectors with Malaria
Parameter Description Value Reference
ΛH Human recruitment rate 206,139,587

54.69×365 day−1 [56, 57]
ΛV Vector recruitment rate 104

21 [56]
θ2 Human contact rate with COVID-19 patients 0.4531 [58]
ϱH Human natural death rate 1

54.69×365 day−1 [56, 57]
ηHM Loss of infection acquired immunity to Malaria 0.005 Assumed
ηHC Loss of infection acquired immunity to COVID-19 0.005 Assumed
µHC Fraction of susceptible humans vaccinated against COVID-19 0.025 [59]
χHC COVID-19 vaccine efficacy 0.95 [14]
θ1 Effective contact rate for vector to human transmission of Malaria 0.125 - 0.5 [60]
θ3 Effective contact rate for human to vector transmission of Malaria 0.48 [61]
αHM Malaria recovery rate 0.25 [56]
αHC COVID-19 recovery rate 0.3 [62]
ϑ1 Modification parameter accounting for susceptibility

of Malaria-infected individuals to COVID-19 1 Assumed
ϑ2 Modification parameter accounting for susceptibility

of COVID-19-infected individuals to Malaria 1 Assumed
φHM Malaria-induced death rate 0.000153 [7]
φHC COVID-19-induced death rate 0.015 [63]
ϱV Vector removal rate 1

21 [56, 57]

of COVID-19 is possible at the rate θ2, especially when safety measures are neglected and the
recovery rate of infected humans with COVID-19 is αHC. χHC is the COVID-19 vaccine efficacy
and θ1 is the contact rate for vector to human transmission of Malaria. ϑ1 is the modification
parameter accounting for the susceptibility of Malaria-infected individuals to COVID-19 and ϑ2

is the modification parameter accounting for susceptibility of COVID-19 infected individuals to
Malaria. Mosquitoes are recruited into the population at the rate ΛV and noting that the adult
mosquito has a life span, we have the vector removal rate as ϱV.
Following the assumptions above, the COVID-19 and Malaria co-infection model is given by the
following fractional differential equations;

CDω
t SH(t) = ΛH −

(
βVM IVM

NH

+
βHC(IHC + IMC)

NH

)
SH − ϱHSH − µHCSH + ηHM RHM + ηHC RHC,

CDω
t VHC(t) = µHCSH − (1 − χHC)

βHC(IHC + IMC)

NH

VHC − ϱHVHC −
βVM IVM

NH

VHC,

CDω
t IHM(t) =

βVM IVM

NH

(SH + VHC + RHC)− (αHM + ϱH + φHM)IHM − ϑ1

βHC(IHC + IMC)

NH

IHM + αHC IMC,
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CDω
t RHM(t) = αHM IHM − ϱH RHM − ηHM RHM −

βHC(IHC + IMC)

NH

RHM,

CDω
t IHC(t) =

βHC(IHC + IMC)

NH

(SH + (1 − χHC)VHC + RHM)− (αHC + ϱH + φHC)IHC − ϑ2

βVM IVM

NH

IHC + αHM IMC,

CDω
t RHC(t) = αHC IHC − ϱH RHC − ηHC RHC +

βVM IVM

NH

RHC,

CDω
t IMC(t) = ϑ1

βHC(IHC + IMC)

NH

IHM + ϑ2

βVM IVM

NH

IHC − (ϱH + φHM + φHC + αHM + αHC)IMC,

CDω
t SV(t) = ΛM −

βHM(IHM + IMC)

NH

SV − ϱVSV,

CDω
t IVM(t) =

βHM(IHM + IMC)

NH

SV − ϱV IVM,

with the corresponding initial conditions SH ≥ (0), VHC ≥ (0), IHM ≥ (0), RHM ≥ (0), IHC ≥ (0),
RHC ≥ (0), IMC ≥ (0), SV ≥ (0), IVM ≥ (0).

Invariant domain

Theorem 1 Suppose SH(t), VHC(t), IHM(t), RHM(t), IHC(t), RHC(t), IMC(t) are solutions of the system of equa-
tions for the human population, then the set

∆h =
{
(SH(t), VHC(t), IHM(t), RHM(t), IHC(t), RHC(t), IMC(t)) ∈ R7

+ : SH

+ VHC + IHM + RHM + IHC + RHC + IMC ≤
ΛH

ϱH

}
,

(7)

is positively invariant with respect to the model concerned.
For the vector population, Suppose Sv(t), IVM(t) are any solution of the system, then the set

∆v =

{
(SV(t), IVM(t)) ∈ R2

+ : SV + IVM ≤ ΛV

ϱV

}
, (8)

is positively invariant with respect to the model concerned.

Proof We shall adopt the proof put together by [64].

Positivity

Following the pattern in the work of [48], by contradiction, we assume that equation three of
the model is false. Then let t1 = min{t : SH(t)VHM(t)IHM(t)RHM(t)IHC(t)RHC(t)IMC(t) Sv(t)IVM(t) = 0}.
Suppose IHM(t1) = 0, it implies that SH(t) > 0, VHC(t) > 0, RHM(t) > 0, IHC(t) > 0, RHC(t) > 0,
IMC(t) > 0, SV(t) > 0, IVM(t) > 0 for all [0, t1]. We can assume that there exists the following
expression,

θ1 = min
0≤t≤tt

{
(βVM IVMSH + βVM IVM RHC + βVM IVM RHC − ϑ1βHC IHC − ϑ1βHC IMC)

IHM

− (αHM + ϱH + φHM + αHC IMC)

}
.

It follows that

CDω
t IHM − θ1 IHM > 0. (9)
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We can also determine a continuous function Φ1 to ascertain the following equation

CDω
t IHM − θ1 IHM = −Φ1(t).

By Laplace transform, the above inequality becomes

sω ĨHM(s)− sω−1 IHM(0)− θ1 ĨHM(s) = −Φ̃1(s),

from which

ĨHM(s) = IHM(0)
sω−1

sω − θ1
−

Φ1(s)
sω − θ1

=
IHM(0)

s

(
1 −

θ1

sω

)−1
−

Φ1(s)
sω

(
1 −

θ1

sω

)−1
(10)

= IHM(0)
∞∑

k=0

θk
1

sωk+1 − Φ1(s)
∞∑

k=0

θk
1

sωk+ω
.

Ignoring the non-positive term, the inverse Laplace transform gives the solution of (9) (using
Mittag-Leffler function), which satisfies the following expression:

IHM > IHM(0)
∞∑

k=0

(θ1tω)k

Γ(ωk + 1)
= IHM(0)Eω (θ1tω) ,

such that the positivity of the solution IHM is given by

IHM > IHM(0)Eω (θ1tω) > 0,

which contradicts IHM(t1) = 0. Similarly, suppose IMC(t1) = 0 which implies that SH(t) > 0,
VHC(t) > 0, RHM(t) > 0, IHM(t) > 0, RHC(t) > 0, IHC(t) > 0, SV(t) > 0, IVM(t) > 0 for all 0 ≤ t ≤ t1.
We assume that there exists the following expression:

θ2 = min
0≤t≤tt

{
(φ1βHC IHC IHM + φ1βHC IHM + φ2βVM IVM IHM)

IMC

− (ϱH + ϑM + ϑC + αHM + αHC)

}
,

so that

CDω
t IMC(t) > θ2 IMC(t). (11)

We can still determine a continuous function Φ2(t) to ascertain the following equation

CDω
t IMC(t)− θ2 IMC(t) = −Φ2(t).

By applying the Laplace transform, the above inequality becomes

sω ĨMC(s)− sω−1 IMC(0)− θ2 ĨMC(s) = −Φ̃2(s),
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from which

ĨMC(s) = Ic(0)
∞∑

k=0

θk
2

sωk+1 − Φ2(s)
∞∑

k=0

θk
2

sωk+ω
.

Ignoring the non-positive term, the inverse Laplace transform gives the solution of Eq. (11) (using
Mittag-Leffler function), satisfying the following expression:

IMC(t) > IMC(0)
∞∑

k=0

(θ2tω)k

Γ(ωk + 1)
= IMC(0)Eω (θ2tω) . (12)

Hence the positivity of this other solution IMC is given by IMC(t) > IMC(0)Eω (θ2tω) > 0, which
contradicts IMC(t1) = 0. More so, since the above have similar results, the same pattern will show
that the positivity of the solutions SH, VHC, RHM, RHC, SV and VHC respectively are given by

IHC(t) > IHC(0)Eω (θ3tω) > 0,

SH(t) > SH(0)Eω (θ4tω) > 0,

VHC(t) > VHC(0)Eω (θ5tω) > 0,

RHM(t) > RHM(0)Eω (θ6tω) > 0,

RHC(t) > RHC(0)Eω (θ7tω) > 0,

SV(t) > SV(0)Eω (θ8tω) > 0,

IVM(t) > IVM(0)Eω (θ9tω) > 0.

Basic reproduction number of the mathematical model

The Malaria-COVID-19 co-infection model has a disease-free equilibrium (DFE) as given below.
First, we set the right-hand side of the equations to zero to obtain

ξ0 =(S0
H
, V0

HC
, I0

HM
, R0

HM
, I0

HC
, R0

HC
, I0

MC
, S0

V
, I0

VM
)

=
( ΛH

ϱH + µHC

,
µHCSH

ϱH

, 0, 0, 0, 0, 0,
ΛH

ϱV

, 0
)

.
(13)

We apply the next-generation operator method to the model. Matrix F is of new infection and
matrix V is the transfer of infection in and out of the disease classes. Thus, we have

F =


0 0 0 βVM

0 βHC Q1
NH

βHC Q1
NH

0
0 0 0 0

βHMSV

NH
0 βHMSV

NH
0

 , (14)

where Q1 = [SH + (1 − χHC)]VHC.

V =


k1 0 −αHC 0
0 k2 −αHM 0
0 0 k3 0
0 0 0 ϱV

 , (15)
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where k1 = αHM + ϱH + φHM, k2 = αHC + ϱH + φHC, k3 = ϱH + φM + φC + αHM + αHC. The basic reproduction
number of the Malaria-COVID-19 co-infection model, denoted by R0 as illustrated in [65], is
presented as R0 = max{R0M,R0C} where R0M and R0C are respectively the Malaria and COVID-19
associated reproduction numbers, given by

R0M =

√
βHM βVMS∗

V

ϱVk1N∗
H

, and R0C =
βHC[S∗

H
+ (1 − χHC)V∗

HC
]

k2N∗
H

.

Local asymptotic stability of disease-free equilibrium (DFE) of the co-infection model

Theorem 2 At Disease-Free Equilibrium (DFE), the mathematical model is locally asymptotically stable
(LAS) if R0 < 1, and unstable if R0 > 1.

Proof The local stability of the model is analyzed using the Jacobean square matrix of the whole
system, evaluated at COVID-19-Malaria-free equilibrium, given by;

J =



−(ϱH + µHC) 0 0 ηHM
βHCSH

NH
ηHC

βHCSH

NH
0 βVMSH

NH

µHC ϱH 0 0 −
(1−χHC)βHCVHC

NH
0 −

(1−χHC)βHCVHC

NH
0 βVMVHC

NH

0 0 −k1 0 0 0 αHC 0 βVM(SH+VHC)
NH

0 0 αHM −(ϱH + ηHM) 0 0 0 0 0
0 0 0 0 H − k2 0 H + αHM 0 0
0 0 0 0 αHC −(ϱH + ηHC) 0 0 0
0 0 0 0 0 0 −k3 0 0
0 0 −

βHMSV

NH
0 0 0 −

βHMSV

NH
−ϱV 0

0 0 βHMSV

NH
0 0 0 βHMSV

NH
0 −ϱV


,

(16)

where H = βHC[SH+(1−χHC)VHC]
NH

.
The first three eigenvalues are λ1 = −(ηHC + ϱH), λ2 = −ϱV (twice), while the remaining eigenvalues
will as well satisfy the negativity requirement for stability (following the method of Routh-
Hurwitz).
Epidemiologically, Theorem 2 implies that the prevalence of COVID-19 and Malaria can be
eradicated from the population when R0 and if the initial population of the model is in the region
of attraction of the DFE. Hence, the DFE is locally asymptotically stable if R0 = max(R0C,R0M) < 1.

Existence and uniqueness of solution of the model

As significantly demonstrated by [66], we show the existence and uniqueness of the solution
of the fractional-order model. When we apply the fractional integral to the Caputo fractional
derivative model of order ω > 0 while maintaining its initial conditions, we have the following
Volterra-integral equations as a solution to the fractional model. This theory validates our claim
that a solution to our model equations exists and is unique:

SH − SH(0) =
1

Γ(ω)

∫ t

0
(t − τ)ω−1K (τ, SH(τ)) dτ,

VHC − VHC(0) =
1

Γ(ω)

∫ t

0
(t − τ)ω−1Q (τ, VHM(τ)) dτ,

IHM − IHM(0) =
1

Γ(ω)

∫ t

0
(t − τ)ω−1V (τ, IHM(τ)) dτ,

(17)
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RHM(t)− RHM(0) =
1

Γ(ω)

∫ t

0
(t − τ)ω−1F (τ, RHM(τ)) dτ,

IHC(t)− IHC(0) =
1

Γ(ω)

∫ t

0
(t − τ)ω−1H (τ, IHC(τ)) dτ,

RHC(t)− RHC(0) =
1

Γ(ω)

∫ t

0
(t − τ)ω−1G (τ, RHC(τ)) dτ,

IMC(t)− IMC(0)+ =
1

Γ(ω)

∫ t

0
(t − τ)ω−1U (τ, IMC(τ)) dτ,

Sv(t)− Sv(0) =
1

Γ(ω)

∫ t

0
(t − τ)ω−1P (τ, Sv(τ)) dτ,

IVM(t)− IVM(0) =
1

Γ(ω)

∫ t

0
(t − τ)ω−1W (τ, IVM(τ)) dτ.

We assume that the functions (K, Q, V, F, H, G, U, P, W) : [0, b]× R → R are continuous so that
(R, ∥.∥) is the Banach space and H1 ([0, b]) is that of all the continuous function defined in
[0, b] → R carved with Chebychev norm. We now prove that the continuous functions K, Q, V, F,
H, G, U, P and W satisfy the Lipschitz condition when

sup
0<t≤Y

∥∥∥∥ IHM

NH

∥∥∥∥ ≤ Θ1, sup
0<t≤Y

∥∥∥∥ IHC

NH

∥∥∥∥ ≤ Θ2, sup
0<t≤Y

∥∥∥∥ IMC

NH

∥∥∥∥ ≤ Θ3, sup
0<t≤Y

∥∥∥∥ IVM

NH

∥∥∥∥ ≤ Θ4.

Thus, firstly we have

∥K(SH1)− K(SH2)∥ =

∥∥∥∥ΛH −

(
βVM IVM

NH

+
βHC(IHC + IMC)

NH

+ ϱH + µHC − ηHM RHM − ηHC RHC

)
SH1

−

(
ΛH −

(
βVM IVM

NH

+
βHC(IHC + IMC)

NH

+ ϱH + µHC − ηHM RHM − ηHC RHC

)
SH2

)∥∥∥∥
=

∥∥∥∥−βVM IVM

NH

(SH1 − SH2)−
βHC IHC

NH

(SH1 − SH2)−
βHC IMC

NH

(SH1 − SH2)− ϱH (SH1 − SH2)

− µHC (SH1 − SH2) + ηHM RHM (SH1 − SH2) + ηHC RHC (SH1 − SH2)

∥∥∥∥
≤ βVM sup

0≤t≤Y

∥∥∥∥ IVM

NH

∥∥∥∥ ∥SH1 − SH2∥+ βHC sup
0≤t≤Y

∥∥∥∥ IHC

NH

∥∥∥∥ ∥SH1 − SH2∥

+ βHC sup
0≤t≤Y

∥∥∥∥ IMC

NH

∥∥∥∥ ∥SH1 − SH2∥+ ϱH ∥SH1 − SH2∥+ µHC ∥SH1 − SH2∥

+ ηHM RHM ∥SH1 − SH2∥+ ηHC RHC ∥SH1 − SH2∥
≤ LK ∥SH1 − SH2∥ , (18)

where

LK = βVMΘ4 + βHCΘ2 + βHCΘ3 + ϱH + µHC + ηHM RHM + ηHC RHC > 0.

Secondly,

∥Q(VHC1)− Q(VHC2)∥ =

∥∥∥∥µHCSH −

(
βHC IHC

NH

+
χHC IMC

NH

− ϱH −
βVM IVM

NH

)
VHC1
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−

(
µHCSH −

(
βHC IHC

NH

+
χHC IMC

NH

− ϱH −
βVM IVM

NH

)
VHC2

)∥∥∥∥ (19)

= −

(
βHC IHC

NH

+
χHC IMC

NH

− ϱH −
βVM IVM

NH

)
∥VHC1 − VHC2∥

≤
(

βHC sup
0≤t≤Y

∥∥∥∥ IHC

NH

∥∥∥∥+ χHC sup
0≤t≤Y

∥∥∥∥ IMC

NH

∥∥∥∥+ βVM sup
0≤t≤Y

∥∥∥∥ IVM

NH

∥∥∥∥+ ϱH

)
∥VHC1 − VHC2∥

≤ LQ ∥VHC1 − VHC2∥ ,

where

LQ = βHCΘ2 + χHCΘ3 + βVMΘ4 + ϱH > 0.

Applying a similar approach gives the following

∥V(IHM1)− V(IHM2)∥ =

∥∥∥∥ βVM IVMSH

NH

+
βVM IVMVHC

NH

+
βVM IVM RHC

NH

−

(
αHM + ϱH + φHM +

ϑ1BHC IHC

NH

+
ϑ1 IMC

NH

− αHM

)
IHM1

∥∥∥∥
−

∥∥∥∥ βVM IVMSH

NH

+
βVM IVMVHC

NH

+
βVM IVM RHC

NH

−

(
αHM + ϱH + φHM +

ϑ1BHC IHC

NH

+
ϑ1 IMC

NH

− αHM

)
IHM2

∥∥∥∥
=

(
αHM + ϱH + φHM +

(
ϑ1BHC IHC

NH

+
ϑ1 IMC

NH

))
∥IHM1 − IHM2∥

≤ LV ∥IHM1 − IHM2∥ , (20)

where

LV = ϑ1BHCΘ2 + ϑ1Θ3 + αHM + ϱH + φHM > 0.

∥F(RHM1)− F(RHM2)∥ =

∥∥∥∥αHM IHM − ϱH − ηHM −

(
βHC IHC

NH

−
βHC IMC

NH

)
RHM1

−

(
αHM IHM − ϱH − ηHM −

(
βHC IHC

NH

−
βHC IMC

NH

)
RHM2

)∥∥∥∥
≤ LF ∥RHM1 − RHM2∥ , (21)

where

LF = βHCΘ2 + βHCΘ3 > 0.

∥H(IHC1)− H(IHC2)∥ =

∥∥∥∥(βHCSH

NH

+
βHC IMCSH

NH

+
βHCVHC

NH

+
βHC IMCVHC

NH

−
βHCχHCVHC

NH

−
βHC IMCχHCVHC

NH

+
βHC RHC

NH

+
βHC IMC RHC

NH

− αHC − ϱH + φHC −
ϑ2βVM IVM

NH

+ αHM IMC

)
IHC1

−

(
βHCSH

NH

+
βHC IMCSH

NH

+
βHCVHC

NH

+
βHC IMCVHC

NH

−
βHCχHCVHC

NH

−
βHC IMCχHCVHC

NH

+
βHC RHC

NH

+
βHC IMC RHC

NH

− αHC − ϱH + φHC −
ϑ2βVM IVM

NH

+ αHM IMC

)
IHC2

∥∥∥∥
≤ LH ∥IHC1 − IHC2∥ , (22)
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where

LH = βHCχHCΘ1 + βHCχHCΘ2 + ϑ2βVMΘ4 + αHC + ϱH > 0.

∥G(RHC1)− G(RHC2)∥ =

∥∥∥∥(αHC IHC − ϱH − ηHC −
βVM IVM

NH

)
RHC1

−

(
αHC IHC − ϱH − ηHC −

βVM IVM

NH

)
RHC2

∥∥∥∥
≤ LG ∥RHC1 − RHC2∥ , (23)

where

LG = βVMΘ4 + ϱH + ηHC > 0.

∥U(IMC1)− U(IMC2)∥ =

∥∥∥∥(ϑ1βHC IHCℑHM

NH

+
ϑ1βHC IHM

NH

+
ϑ2βVM IVM IHM

NH

− ϱH − φM − φC − αHM − αHC

)
IMC1

−

(
ϑ1βHC IHCℑHM

NH

+
ϑ1βHC IHM

NH

+
ϑ2βVM IVM IHM

NH

− ϱH − φM − φC − αHM − αHC

)
IMC2

∥∥∥∥
≤ LU ∥IMC1 − IMC2∥ , (24)

where

LU = ϱH + φM + φC + αHM + αHC > 0.

∥P(SV1)− P(SV2)∥ =

∥∥∥∥(ΛM −
βHM IHM

NH

−
βHM IMC

NH

− ϱV

)
SV1 −

(
ΛM −

βHM IHM

NH

−
βHM IMC

NH

− ϱV

)
SV2

∥∥∥∥
≤ LP ∥SV1 − SV2∥ , (25)

where

LP = βHMΘ1 + βHMΘ2 + ϱV > 0.

∥W(IVM1)−W(IVM2)∥ =

∥∥∥∥(βHM IHMSVM

NH

+
βHM IMCSVM

NH

− ϱV IVM

)
IVM1 −

(
βHM IHMSVM

NH

+
βHM IMCSVM

NH

− ϱV IVM)IVM2

∥∥∥∥
≤ LW ∥IVM1 − IVM2∥ , (26)

where

LW = ϱV > 0.

Theorem 3 Suppose
(

LK, LQ, LV , LF, LH, LG, LU , LP, LW
) Γ(1−ω) sin(πω)Yω

ωπ < 1, we then say that the
fractional model has a unique solution on the interval [0, b], letting (K, Q, V, F, H, G, U, P, W) : [0, b]×
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R → R be continuous and satisfying the Lipschitz condition.

Proof We can see the proof in the work of [67–69].

Furthermore, we look at the existence of solutions of the fractional model using Schaefer’s fixed
point theorem.

Theorem 4 Suppose that (K, Q, V, F, H, G, U, P, W) : [0, b]× R → R are continuous and that there
exists constants (LK1, LQ1, LV1, LF1, LH1, LG1, LU1, LP1, LW1) > 0 such that

∥K(t, SH)∥ ≤ LK1 (g + ∥SH∥) , ∥Q(t, VHC)∥ ≤ LQ1 (g + ∥VHC∥) , ∥V(t, IHM)∥ ≤ LV1 (g + ∥IHM∥) ,

∥F(t, RHM)∥ ≤ LF1 (g + ∥RHM∥) , ∥H(t, IHC)∥ ≤ LH1 (g + ∥IHC∥) , ∥G(t, RHC)∥ ≤ LG1 (g + ∥RHC∥) ,

∥U(t, IMC)∥ ≤ LU1 (g + ∥IMC∥) , ∥P(t, SV)∥ ≤ LP1 (g + ∥SV∥) , ∥W(t, IVM)∥ ≤ LW1 (g + ∥IVM∥) ,

where 0 < g ≤ 1 is an arbitrary number, then the system has at least one solution.

Proof The proof of this result is similar to the approach used in ([67–69], and therefore omitted.

Generalized Ulam-Hyers-Rassias stability

This particular stability for fractional systems has been studied in a few literature. In this section
we will adopt a similar approach in [70] to show that our fractional model is generalized Ulam-
Hyers-Rassias (UHR) stable. Following [70], we have the definition below.

Definition 6 The fractional model above is generalized UHR stable with respect to Ω(t) ∈ H1([0, b], R) if
there exists a real value κψ > 0 such that ϵ > 0 and for every solution (SH, VHM, IHM, RHM, IHC, RHC, IMC, SV, IVM) ∈
H1([0, b], R) of the following inequalities∣∣∣Dψ

t SH(t)− K(t, SH)
∣∣∣ ≤ Ω(t),

∣∣∣Dψ
t VHM − Q(t, VHM)

∣∣∣ ≤ Ω(t),
∣∣∣Dψ

t IHM − V(t, IHM)
∣∣∣ ≤ Ω(t),

∣∣∣Dψ
t RHM(t)− F(t, RHM(t))

∣∣∣ ≤ Ω(t),
∣∣∣Dψ

t IHC(t)− H(t, IHC(t))
∣∣∣ ≤ Ω(t),

∣∣∣Dψ
t RHC(t)− G(t, RHC(t))

∣∣∣ ≤ Ω(t),

∣∣∣Dψ
t IMC(t)− U(t, IMC(t))

∣∣∣ ≤ Ω(t),
∣∣∣Dψ

t SV(t)− P(t, SV(t))
∣∣∣ ≤ Ω(t),

∣∣∣Dψ
t IVM(t)−W(t, IVM(t))

∣∣∣ ≤ Ω(t),
∣∣∣Dψ

t SV(t)− P(t, SV(t))
∣∣∣ ≤ Ω(t),

there exists a solution (S̄H, V̄HM, ĪHM, R̄HM, ĪHC, R̄HC, ĪMC, S̄v, ĪVM) ∈ H1([0, b], R) of the fractional model with∣∣SH(t)− S̄H

∣∣ ≤ κψΩ(t),
∣∣VHM − V̄HM

∣∣ ≤ κψΩ(t),
∣∣IHM − ĪHM

∣∣ ≤ κψΩ(t),
∣∣RHM(t)− R̄HM(t)

∣∣ ≤ κψΩ(t),

∣∣IHC(t)− ĪHC(t)
∣∣ ≤ κψΩ(t),

∣∣RHC(t)− R̄HC(t)
∣∣ ≤ κψΩ(t),

∣∣IMC(t)− ĪMC(t)
∣∣ ≤ κψΩ(t),
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∣∣SV(t)− S̄V(t)
∣∣ ≤ κψΩ(t),

∣∣IVM(t)− ĪVM(t)
∣∣ ≤ κψΩ(t).

Theorem 5 The fractional model is generalized Ulam-Hyers-Rassias stable with respect to Ω ∈ H1([0, b], R)

if

(LK, LQ, LV, LF, LH, LG, LU, LP, LW) Tψ < 1.

Proof From Definition 6, let Ω denote the non-decreasing function of t, then there exists ϵ > 0
such that ∫ t

0
(t − τ)ψ−1Ω(τ)dτ ≤ ϵΩ(t),

for every t ∈ [0, b]. The functions K, Q, V, F, H, G, U, P, W have been shown to be continuous and

(LK, LQ, LV, LF, LH, LG, LU, LP, LW) > 0,

satisfies the Lipschitz condition as shown in the previous section. From Theorem 3, the fractional
model has the unique solution

S̄H = SH(0) +
1

Γ(ψ)

∫ t

0
(t − τ)ψ−1K(τ, S̄H(τ))dτ.

Integrating the inequalities in Definition 6 we get∣∣∣∣SH − SH(0)−
1

Γ(ψ)

∫ t

0
(t − τ)ψ−1K(τ, Sh(τ))dτ

∣∣∣∣ ≤ 1
Γ(ψ)

∫ t

0
(t − τ)ψ−1Ω(τ)dτ

≤ ϵΩ(t)Γ(1 − ψ) sin(πψ)

π
. (27)

Using (27) and the Lemma we get

∣∣SH − S̄H

∣∣ ≤
∣∣∣∣SH −

(
SH(0) +

1
Γ(ψ)

∫ t

0
(t − τ)ψ−1K(τ, S̄H(τ))dτ

)∣∣∣∣
≤

∣∣∣∣SH − SH(0)−
(

1
Γ(ψ)

∫ t

0
(t − τ)ψ−1K(τ, S̄H(τ))dτ +

1
Γ(ψ)

∫ t

0
(t − τ)ψ−1K(τ, SH(τ))dτ

−
1

Γ(ψ)

∫ t

0
(t − τ)ψ−1K(τ, SH(τ))dτ

)∣∣∣∣
≤

∣∣∣∣SH − Sh(0)−
1

Γ(ψ)

∫ t

0
(t − τ)ψ−1K(τ, SH(τ))dτ

∣∣∣∣
+

1
Γ(ψ)

∫ t

0
(t − τ)ψ−1 ∣∣K(τ, Sh(τ))− K(τ, S̄h(τ))

∣∣ dτ

≤ ϵΩ(t)Γ(1 − ψ) sin(πψ)

π
+

LKΓ(1 − ψ) sin(πψ)

π

∫ t

0
(t − τ)ψ−1 ∣∣SH(τ)− S̄H(τ)

∣∣ dτ

≤ ϵΩ(t)Γ(1 − ψ) sin(πψ)

π
Eψ

(
Lψ

KT

)
.
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By setting κψ = ϵΓ(1−ψ) sin(πψ)
π Eψ

(
Lψ

KT

)
, we have

∣∣SH − S̄H

∣∣ ≤ κψΩ(t), t ∈ [0, b].

Applying the similar approach we get∣∣VHM − V̄HM

∣∣ ≤ κψΩ(t),
∣∣IHM − ĪHM

∣∣ ≤ κψΩ(t),

∣∣RHM(t)− R̄HM(t)
∣∣ ≤ κψΩ(t),

∣∣IHC(t)− ĪHC(t)
∣∣ ≤ κψΩ(t),

∣∣RHC(t)− R̄HC(t)
∣∣ ≤ κψΩ(t),

∣∣IMC(t)− ĪMC(t)
∣∣ ≤ κψΩ(t),

∣∣SV(t)− S̄V(t)
∣∣ ≤ κψΩ(t),

∣∣IVM(t)− ĪVM(t)
∣∣ ≤ κψΩ(t),

for every t ∈ [0, b]. Hence, we conclude that the fractional model is generalized Ulam-Hyers-
Rassias stable with respect to Ω(t).

4 Numerical scheme and simulations

We carried out some numerical simulations to further explain the analytical results we presented
earlier. Most of our parameters are obtained from previous works of renowned authors who
have done similar works like this. However, there are few cases where certain parameters are
unavailable in the literature, such cases gave us room to assume relevant values for the sake of
this study.

The fractional predictor-corrector method was used in carrying out numerical simulations and
the numerical scheme was derived using the Adams-Bashforth linear multi-step method in the
Caputo sense, taking into consideration the convergence of the numerical method. The model is
simulated using parameters provided based on dynamical data relevant to COVID-19 and Malaria
co-infection in Nigeria. The total human population of Nigeria is estimated to be 206,139,587 as
of 2020 and its life expectancy is estimated at 54.69 years according to WHO, hence the natural
death rate ϱH is set at 1

54.69×365 per day and the recruitment rate ΛH set at 206,139,597
54.69×365 per day. Under

normal biological interpretation, we let all parameters used to be non-negative and considered
the following initial conditions; we assume that the total susceptible population is SH(0) =

200, 000, 000 and the total human population vaccinated against COVID-19, VHC(0) = 8, 000, 000.
Hence we set IHM(0) = 700, 000, RHM(0) = 100, 000, IHC(0) = 77, 239, RHC(0) = 72, 350, IMC(0) =

200, 000. We also assume susceptible vector population SV(0) = 50, 000, IVM(0) = 40, 000. It
is important to state that very scanty data is available in the literature on the co-infection of
COVID-19 and Malaria as of October 2021.

Let the uniform grid points be tk = kh, where k = 0, 1, 2, . . . , m with some integer m and the
grid step size h = T/m. Then by piece-wise interpolation with nodes and knots taken at tj,
j = 0, 1, 2, . . . , k + 1, Eq. (17) becomes the fractional variant of the one-step Adam-Moulton
method (Corrector formula);
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SH(tk+1)− SH(0) =
hω

Γ(ω + 2)

 k∑
j=0

uj,k+1K
(
tj, SH(tj)

)
+ K (tk+1, Sp

H
(tk+1))

 ,

VHC(tk+1)− VHC(0) =
hω

Γ(ω + 2)

 k∑
j=0

uj,k+1Q
(
tj, VHC(tj)

)
+ Q (tk+1, Vp

HC
(tk+1))

 ,

IHM(tk+1)− IHM(0) =
hω

Γ(ω + 2)

 k∑
j=0

uj,k+1V
(
tj, IHM(tj)

)
+ H (tk+1, Ip

HM
(tk+1))

 ,

RHM(tk+1)− RHM(0) =
hω

Γ(ω + 2)

 k∑
j=0

uj,k+1F
(
tj, RHM(tj)

)
+ K (tk+1, Rp

HM
(tk+1))

 ,

IHC(tk+1)− IHC(0) =
hω

Γ(ω + 2)

 k∑
j=0

uj,k+1H
(
tj, IHC(tj)

)
+ Q (tk+1, Ip

HC
(tk+1))

 , (28)

RHC(tk+1)− RHC(0) =
hω

Γ(ω + 2)

 k∑
j=0

uj,k+1G
(
tj, RHC(tj)

)
+ U (tk+1, Rp

HC
(tk+1))

 ,

IMC(tk+1)− IMC(0) =
hω

Γ(ω + 2)

 k∑
j=0

uj,k+1U
(
tj, IMC(tj)

)
+ V (tk+1, Ip

MC
(tk+1))

 ,

Sv(tk+1)− Sv(0) =
hω

Γ(ω + 2)

 k∑
j=0

uj,k+1P
(
tj, SV(tj)

)
+ W (tk+1, Sp

V
(tk+1))

 ,

IVM(tk+1)− IVM(0) =
hω

Γ(ω + 2)

 k∑
j=0

uj,k+1W
(
tj, IVM(tj)

)
+ V (tk+1, Ip

VM
(tk+1))

 ,

where the weight

uj,k+1 =


kω+1 − (k − ω)(k + 1)ω, j = 0,

(k − j + 2)ω+1 + (k − j)ω+1 − 2 (k − j + 1)ω+1 , 1 ≤ j ≤ k,

1, j = k + 1.

From the one-step Adams-Bashforth method, the predictor formula is presented as

Sp
H (tk+1)− SH(0) =

1
Γ (ω)

k∑
j=0

vj,k+1K
(
tj, SH(tj)

)
,

Vp
HC
(tk+1)− VHC(0) =

1
Γ (ω)

k∑
j=0

vj,k+1Q
(
tj, VHC(tj)

)
,

Ip
HM
(tk+1)− IHM(0) =

1
Γ (ω)

k∑
j=0

vj,k+1V
(
tj, IHM(tj)

)
,
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Rp
HM
(tk+1)− RHM(0) =

1
Γ (ω)

k∑
j=0

vj,k+1F
(
tj, RHM(tj)

)
,

Ip
HC
(tk+1)− IHC(0) =

1
Γ (ω)

k∑
j=0

vj,k+1H
(
tj, IHC(tj)

)
,

Rp
HC (tk+1)− RHC(0) =

1
Γ (ω)

k∑
j=0

vj,k+1G
(
tj, RHC(tj)

)
, (29)

Ip
MC (tk+1)− IMC(0) =

1
Γ (ω)

k∑
j=0

vj,k+1U
(
tj, IMC(tj)

)
,

Sp
v (tk+1)− Sv(0) =

1
Γ (ω)

k∑
j=0

vj,k+1P
(
tj, Sv(tj)

)
,

Ip
VM (tk+1)− IVM(0) =

1
Γ (ω)

k∑
j=0

vj,k+1W
(
tj, IVM(tj)

)
,

where the weight

vj,k+1 = ω−1hω ((k − j + 1)ω − (k − j)ω) .
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Figure 2. Fitting the cumulative number of COVID-19 reported cases
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Figure 3. Simulation for susceptible human at different fractional order values
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Figure 4. Simulation for vaccinated individuals against COVID-19 at different fractional order values
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Figure 5. Simulation for individuals infected with malaria at different fractional order values
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Figure 6. Simulation for individuals who recovered from malaria at different fractional order values
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Figure 7. Simulation for individuals infected with COVID-19 at different fractional order values
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Figure 8. Simulation for individuals who recovered from COVID-19 at different fractional order values



Iwa et al. | 153

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5
x 10

4

Time (days)

C
O

V
ID

−
1

9
−

M
a

la
ri

a
 c

o
−

in
fe

c
ti

o
n

 

 

ω=0.95

ω=0.85

ω=0.75

ω=0.65

Figure 9. Simulation for individuals co-infected with COVID-19 and Malaria at different fractional order values
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Figure 10. Simulation for susceptible vectors at different fractional order values
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Figure 11. Simulation for infectious vectors with malaria at different fractional order values
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Discussion of results

Figure 1 is the model flow diagram showing migration from one compartment to the other. Fitting
of our model is presented in Figure 2 where the cumulative reported cases were used to fit the
model to data from Nigeria. The figure showed that the co-infection model fits well with the
Nigerian COVID-19 data for daily cumulative reported cases.
The various simulations carried out on each compartment produce distinct results of the epidemic
as illustrated in the behavior of the figures. Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8,
Figure 9, Figure 10 and Figure 11 are results of the compartments generated at different fractional
order, ω = 0.95, 0.85, 0.75 and 0.65 using parameters values from Table 1. In Figure 3, we plot the
total susceptible population over time at different fractional order. It is observed that for the first 17
days, the fractional order is directly proportional to the total population; increasing the fractional
order causes an increase in the susceptible population, and decreasing the fractional order reduces
the population, indicating the absence of disease in the population. Between the 18th and 79th
days, we experience a rapid swap in the behaviour which demonstrates the susceptibility of the
human population. Figure 4 presents the simulations of individuals vaccinated against COVID-19
over time in different fractional order. It is observed that as we increase the fractional order, the
number of individuals vaccinated against COVID-19 increases for the first 17 days, after which we
observe a stable behaviour in the next 22 days due to the effect of vaccination on the population
class. Figure 5 shows the total infectious individuals with malaria over time at different fractional
order. It is observed that malaria infection causes a rapid increase in the population as fractional
order increases from day one. We plot the number of individuals who have recovered from malaria
over time at different fractional order in Figure 6. There is a migration from the infections class to
the recovered class as shown in the population of individuals from the first day. Figure 7 presents
the simulations of infectious individuals with COVID-19 over time. It is observed that fractional
order has no effect on individuals with COVID-19 for the first 23 days. After 23 days, an increase
in the fractional derivative order leads to an increase in the number of infectious individuals with
COVID-19 and a decrease in the fractional order decreases the number of infectious individuals
with COVID-19, too.
It is not until after the first 25 days that we noticed an effect due to fractional order on the number of
individuals who have recovered from COVID-19 as presented in Figure 8 Accordingly, an increase
in the fractional order causes an increase in the number of individuals who have recovered from
COVID-19 and a decrease in the fractional directly decreases the number of individuals who
have recovered from COVID-19. In Figure 9 we present the simulation of infectious individuals
co-infected with malaria and COVID-19 over time in different fractional order. It is observed that
the infectious population co-infected with malaria and COVID-19 is directly proportional to the
fractional order after the first 24 days; an increase in the fractional order causes an increase in the
co-infectious population and a decrease in population implies a decrease in the fractional order
too. Figure 10 presents the simulations of susceptible vectors over time. It is observed that an
increase in fractional order causes a sharp increase in the susceptible vectors and a decrease in the
population of vectors implies a decrease in fractional order. In Figure 11, we plot infectious vectors
with malaria over time at different fractional order. It noticed that an increase in the fractional
order increases the infectious vectors with malaria and decreasing the fractional order reduces the
number of infectious vectors with malaria.

Discussion of results on simulations of modification parameter on co-infection

Figure 12 presents simulations of the total co-infection class at different modification rates d1 of
0.5, 1.0, 1.5, and 2.0 of susceptibility of malaria-infected individuals to COVID-19 over time. It has
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Figure 12. Modification parameter for malaria on co-infection class at different values

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8
x 10

4

Time (days)

M
o

d
if

ic
a

ti
o

n
 w

it
h

 C
O

V
ID

−
1

9

 

 

d
2
=0.5

d
2
=1.0

d
2
=1.5

d
2
=2.0

Figure 13. Modification parameter for COVID-19 on co-infection class at different values

clearly shown that, the co-infection class increases among those already infected with malaria
as time increases. A clear indication that a single infection with malaria does not guarantee
immunity to COVID-19. In Figure 13 we plot the simulations of the total co-infection class at
different modification rates d2 of 0.5, 1.0, 1.5, and 2.0 of susceptibility of COVID-19-infection to
malaria over time. The result shows clearly that the co-infection class increases among those
already infected with COVID-19. Singly infection with COVID-19 does not guarantee immunity
to malaria, thereby allowing co-infection.

5 Conclusion

In this paper, we have developed a novel mathematical model for COVID-19 and Malaria and
analyzed using fractional derivatives. In the results, we have shown how control measures such as
vaccination and other preventive measures for either disease could help to curtail the co-infection
of both diseases under an endemic scenario. The mathematical analysis of the model such as the
positivity and boundedness of the equilibrium of solutions are also proven with the help of Laplace
transform. We computed the basic reproduction number R0 and found that the COVID-19-malaria
model is locally asymptotically stable when R0 < 1. The fractional model fits well to Nigeria’s
situation after fitting the model to data related to the dynamics of the co-infection disease in
Nigeria. To further explain our earlier results, we simulated the model numerically and obtained
several graphical results. Results of the simulation showed a good agreement between theoretical
and numerical results; fractional order ω has effects on all the compartments over time and the
co-infection class indicates that a single infection with malaria does not guarantee immunity to
COVID-19 and infection with COVID-19 alone does not also guarantee immunity to malaria. A
careful look at the findings in this work will give a better understanding of COVID-19 pandemic
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and how it can be managed alongside malaria.
Based on our findings, there is a need for more awareness of the dangers of the widespread
COVID-19 and the continual adherence to safety measures of malaria despite the COVID-19
lockdown. The use of face masks, maintaining social distance in gatherings, routine washing of
hands, minimal travels, awareness programs, and timely hospitalization of infected individuals
with mild and severe cases among other safety measures put in place to control the spread of
COVID-19 need to be encouraged. For malaria cases, the use of insecticide-treated bed nets,
protecting doors and windows with nets, clearing of stagnant water, drainages and bushes to
avoid nurturing mosquitoes, and other routine malaria prevention strategies should be continued
despite subsequent COVID-19 lock-down or restrictions. This step will go a long way in checking
co-infection. The results obtained from the different simulations also explain more accurately,
the various methods of prevention of infection from the two diseases. In future research, we
recommend that researchers investigate the Hopf bifurcation of the delayed fractional-order
COVID-19 model. See the papers [71–73] for more information.
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