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Abstract

In this manuscript, we analyze a fractional-order susceptible-infected-recovered (SIR) mathematical
model with a nonlinear incidence rate and nonlinear treatment rate for the control of infectious illness.
The incidence rate of infection is considered as Holling type II and the treatment rate is considered as
Monod-Haldane (MH) type. The existence and uniqueness criteria for the new model, as well as the
non-negativity and boundedness, have been established. We also provide an ideal control strategy for
the SIR model using the treatment rate as a control parameter. The solution of the suggested model
is approximated using the fractional-order Taylor’s method. With the help of MATLAB (2018a), we
perform numerical simulations and illustrate the results through graphical representations.
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1 Introduction

Epidemiology, sometimes compared to the biological study of public health, focuses on the
prevalence and underlying causes of infection susceptibility among the general population. The
use of mathematical models to study such communicable diseases makes it easier to comprehend
how diseases spread, to identify elements that affect transmission for efficient control efforts, and
to assess goals and intervention approaches. Systematically introducing deterministic models for
infectious illnesses, Kermack and McKendrick [1, 2]. To better understand the process of disease
transmission, a number of researchers have investigated various epidemic systems by looking
at various models, such as those developed by SI [3], SIS [4], SIR [5–10], SIRS [9], SEIR [11–14],
SIQR [15], SEIRV [16, 17]. Infectious disease management has been harder during the last several
decades. One of the most important health measures for avoiding infectious diseases is vaccination
because of its safety and cost. Indeed, high vaccination rates have resulted in dramatic reductions
or even elimination of a variety of infectious illnesses, such as smallpox [18], SARS-CoV-2 infection
[19, 20]. In the modeling of infectious illnesses [21–27], the incidence rate is crucial in determining
the behavior at phenomena. In 1927, Kermack and Mckendrick [1] proposed the transmission
rate as βSI. The interaction effect is a linearly rising count of the amount of pathogens in this
incidence rate, which is unsuitable for a vast population. As a result, Capasso and Serio [28]
proposed a nonlinear occurrence g(I)S for g ′(I) < 0 that permits particular "behavioral" effects.
With behavioral modifications, Capasso and Serio inspired their approach. The potential damage
of infection may become extraordinarily high during times of high occurrence, leading to major
behavioral modifications that minimize the actual risk of illness [29]. Goel and Nilam [8], Wei and
Chen [30], Capasso et al. [31, 32], Zhang et al. [33], Anderson and May [34], Li et al. [35], including
Kumar and Nilam [9, 10]. A few writers [36–38], have drawn attention to the significance of
taking nonlinear incidence rates into account when studying the relationships between infectious

transmission and illness. Li et al. [35] presented a SIR model with f (S, I) =
βSI

1 + γI
.

It is well known that treatment rates are crucial in avoiding and limiting the spread of illnesses.
We are aware that the therapy resources in any community are insufficient. As a result, selecting
an effective treatment rate is critical for limiting disease transmission. Due to a lack of efficient
treatment options and vaccinations, epidemic prevention methods focus on efficient preventative
measures. Wang and Ruan [39] proposed the following SIR transmission dynamics with a fixed
treatment rate:

h(I) =

{
n for I > 0,

0 for I = 0.

Zhang and Liu [40], who also provided a superior treatment rate (Holling type II) as a continuously
differentiable function that populates at the largest benefit, as shown below: h(I) = mI

1+nI for I ≥
0, m > 0, n > 0, where m represents the cure rate and n represents the limitation rate in treatment
availability. Zhang et al. [41], Zhou et al. [42] and Dubey et al. [43] have investigated this nonlinear
saturation treatment rate in a somewhat different manner. Kumar [44] proposed a dynamical
model of epidemic along with time delay; Holling Type II incidence rate and Monod–Haldane
type treatment rate.

Motivation and research background

A particularly useful tool for modelling an infectious disease system that includes past illness
states, a memory of past disease patterns, a profile of genetic diversity, etc. is fractional calculus
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[45–48]. When compared to an integer order model, using fractional order derivatives to fine-tune
complicated dynamics within a disease system produces a more accurate picture. Because it
expands the possibilities of integer-order derivatives, fractional-order modelling is a useful tool
for analyzing disease features. The integer order derivative is limited to local characteristics,
but the fractional order derivative has a broad scope. When the system’s consistency domain is
improved, the fractional derivative likewise does better. In this paper, three potential categories
using the Caputo technique are studied using the fractional order SIR compartmental model with
a nonlinear incidence rate and nonlinear treatment rate. The saturated incidence rate of infection
is considered as Holling type II and the treatment rate is considered as Monod-Haldane (MH)
type. The existence and uniqueness criteria for the new models, as well as the solution’s positivity,
have been established, among other conclusions. Both at E0 and E1, we have covered the stability
analysis of our suggested model. For estimating the system solution, Taylor’s approach is also
used. We used the MATLAB (2018a) program to run numerical simulations and analyze the
graphical significance.

Paper structure

Section 2 introduces a pre-requisite concept. We developed the SIR epidemic model in Section 3 in
an environment of the Caputo derivative. In Section 4, the model’s solution has been examined
in terms of its existence, uniqueness, non-negativity, boundedness criteria, and stability analysis.
Using the control parameter treatment rate, we also provide an ideal control strategy for a SIR
model in Section 5. The suggested model’s approximate solution is discussed in Section 6 using
the fractional-order Taylor’s technique in the Caputo derivative. In Section 7, the MATLAB-based
numerical analysis is presented. Section 8 is where the paper comes to a conclusion.

2 Preliminaries

Definition 1 [49] Let f ∈ Cn([t0,∞+),IR), the Caputo derivative of fractional order α > 0 is defined by

C
t0

Dα
t f (t) =

1
Γ(n − α)

∫ t

t0

f (n)(s)
(t − s)α−n+1 ds,

where Γ(·) represent the Gamma function, t ≥ t0, n ∈ Z+ and α ∈ (n − 1, n).

Lemma 1 [50] Consider the system

C
t0

Dα
t u(t) = g(t, x), t0 > 0,

with initial condition u(t0) = ut0 , where α ∈ (0, 1], g : [t0,∞) × Ω → IRn, Ω ∈ IRn, if Lipschitz
condition is satisfied by g(t, x) with respect to x, then there exists a solution of (3.2) on [t0,∞)× Ω which
is unique.

Lemma 2 [51] Let 0 < α ≤ 1, ϕ(t) ∈ C [a, b]. If C
t0

Dα
t f (t) ≥ 0

(
C
t0

Dα
t f (t) ≤ 0

)
, t ∈ (a, b) then ϕ(t)

is a increasing (decreasing) function for t ∈ [a, b].

Lemma 3 [52] The Laplace transform of the Caputo derivative is given by:

L
{

C
t0

Dα
t f (t)

}
= pαF(p)−

n−1∑
j=0

pα−j−1 f j(t0),
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where F(p) = L { f (t)}.

Lemma 4 [53] For any B ∈ Cn×n where C be the complex plane and c, d > 0, the Laplace transform of
Mittag-Leffler function is defined as

L
{

td−1Ec,d(Btc)
}
= sc−d(sc − B)−1,

for R(s) > ∥B∥
1
c , where R(s) denotes the real portion of s.

Lemma 5 [53] Consider the following fractional-order system:

C
t0

Dα
t X(t) = Φ (X) , Xt0 = (x1

t0
, x2

t0
, ..., xn

t0
), xi

t0
> 0, i = 1, 2, ..., n,

with 0 < α ≤ 1, X(t) = (x1(t), x2(t), ..., xn(t)) and Φ(X) : [t0,∞) → Rn×n. The equilibrium
points of the above system are evaluated by solving the following system of equations: Φ(X) = 0.
These equilibrium points are locally asymptotically stable iff each eigenvalue λ of the Jacobian matrix

J(X) =
∂(Φ1, Φ2, ..., Φn)

∂(x1, x2, ..., xn)
calculated at the equilibrium points satisfy |arg(λi)| >

απ
2 .

Lemma 6 [54] Suppose g(t) ∈ R+ be a differentiable function. Then, for any t ≥ t0,

C
t0

Dα
t

[
g(t)− g∗ − g∗ ln

g(t)
g∗

]
≤
(

1 −
g∗

g(t)

)
C
t0

Dα
t g(t), g∗ ∈ R+, ∀α ∈ (0, 1).

Lemma 7 [54] One parametric and two parametric Mittag-Leffler functions are described as follows:

Eα(z) =
∞∑

j=0

zj

Γ(αj + 1)
, and Ea1,a2(z) =

∞∑
j=0

zj

Γ(a1 j + a2)
, where α, a1, a2 ∈ R+.

3 Formulation of the model system

We have introduced a mathematical framework that posits the division of the entire population,
denoted as N, into three distinct categories: susceptible individuals denoted as S, infected individ-
uals denoted as I, and individuals who have recovered, represented as R at a time t.
The sub-populations at different times may vary, but the total of all sub-populations remains
constant, denoted as N. This can be expressed as S(t) + I(t) + R(t) = N. The term βSI

1+γI is
the Holling type II functional response representing the saturated incidence rate of infection
among susceptible where β is the transmission rate between susceptible and infected population.
Also, the term mI

1+n2 I represents the Monod-Haldane type treatment rate, which describes the
non-monotonic behavior of the treatment rate due to limitations in the availability of effective
treatments. Table 1 provides a summary of the symbols used in the proposed model system.

C
t0

Dα
t S(t) = Λ − µS(t)−

βS(t)I(t)
1 + γI(t)

, S(t)|t=0 = S(0) > 0,

C
t0

Dα
t I(t) =

βS(t)I(t)
1 + γI(t)

−
mI(t)

1 + nI2(t)
− (µ + r + δ)I(t), I(t)|t=0 = I(0) > 0,

C
t0

Dα
t R(t) =

mI(t)
1 + nI2(t)

+ δI(t)− µR(t), R(t)|t=0 = R(0) > 0, (1)
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where 0 < α < 1, and C
t0

Dα
t denotes the Caputo operator.

Figure 1. The proposed SIR model’s flow diagram

Table 1. Significance of the relevant parameters

Parameters Biological meaning
Λ recruitment rate
µ death rate
β transmission rate
γ inhibitory rate
m treatment rate
n limitation rate in resources availability
δ recovery rate
r disease-induced mortality rate

4 Analysis of the system

Model existence and model uniqueness

Theorem 1 The model (1), with an initial condition of (S(t0), I(t0), R(t0)) belonging to the positive
region Γ+, invariably exhibits a singular solution within the domain Γ+ for all time points t ≥ t0.

Proof Let Ω = {(S, I, R) ∈ IR3 : max(|S| , |I| , |R|) ≤ M} where τ and M are finite positive real
numbers for the region Ω × [t0, τ]. Let Y = (S, I, R) and Y = (S̄, Ī, R̄).
Consider a mapping F(Y) = (F1(Y), F2(Y), F3(Y)), where

F1(Y) = Λ − µS(t)−
βS(t)I(t)
1 + γI(t)

,

F2(Y) =
βS(t)I(t)
1 + γI(t)

−
mI(t)

1 + nI2(t)
− (µ + δ + r)I(t),

F3(Y) =
mI(t)

1 + nI2(t)
+ δI(t)− µR(t).
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For any Y, Y ∈ Ω:∥∥F(Y)− F(Y)
∥∥

=
∣∣F1(Y)− F1(Y)

∣∣+ ∣∣F2(Y)− F2(Y)
∣∣+ ∣∣F3(Y)− F3(Y)

∣∣
=

∣∣∣∣Λ − µS −
βSI

1 + γI
−

(
Λ − µS̄ −

βS̄ Ī
1 + γ Ī

)∣∣∣∣
+

∣∣∣∣ βSI
1 + γI

−
mI

1 + nI2 − (µ + δ + r) I −
(

βS̄ Ī
1 + γ Ī

−
mĪ

1 + nĪ2

)
+ (µ + δ + r) Ī

∣∣∣∣
+

∣∣∣∣ mI
1 + nI2 + δI − µR −

(
mĪ

1 + nĪ2
+ δ Ī − µR̄

)∣∣∣∣
≤ µ

∣∣(S − S̄)
∣∣+ 2β

∣∣∣∣( SI
1 + γI

−
S̄ Ī

1 + γ Ī

)∣∣∣∣+ 2m
∣∣∣∣( I

1 + nI2 −
Ī

1 + nĪ2

)∣∣∣∣
+ (µ + 2δ + r)

∣∣(I − Ī)
∣∣+ µ

∣∣(R − R̄)
∣∣

≤ µ
∣∣(S − S̄)

∣∣+ 2β

∣∣∣∣(SI(1 + γ Ī)− S̄ Ī(1 + γI)
(1 + γI)(1 + γ Ī)

)∣∣∣∣+ 2m

∣∣∣∣∣
(

I(1 + nĪ2)− Ī(1 + nI2)

(1 + nI2)(1 + nĪ2)

)∣∣∣∣∣
+ (µ + 2δ + r)

∣∣(I − Ī)
∣∣+ µ

∣∣(R − R̄)
∣∣

≤ µ
∣∣(S − S̄)

∣∣+ 2βK[M
∣∣(S − S̄)

∣∣+ ∣∣(I − Ī)
∣∣+ γM2 ∣∣(I − Ī)

∣∣] + 2mL(1 + nM2)
∣∣(I − Ī)

∣∣
+ (µ + 2δ + r)

∣∣(I − Ī)
∣∣+ µ

∣∣(R − R̄)
∣∣

≤ (µ + 2βMK))
∣∣(S − S̄)

∣∣+ (µ + 2δ + r + 2mL(1 + nM2) + 2βK(1 + γM2)
) ∣∣(I − Ī)

∣∣+ µ
∣∣(R − R̄)

∣∣
≤ G1

∣∣S − S̄
∣∣+ G2

∣∣I − Ī
∣∣+ G3

∣∣R − R̄
∣∣

≤ G
∥∥Y −Y

∥∥ ,

where G = max{G1, G2, G3}, G1 = (µ + 2βM) , G2 =
(
µ + 2δ + r + 2mL(1 + nM2) + 2βK(1 + γM2)

and G3 = µ, where
∣∣(1 + γI)(1 + γ Ī)

∣∣ ≥ K and
∣∣∣(1 + nI2)(1 + nĪ2)

∣∣∣ ≥ L. Thus, F(Y) satisfies
Lipschitz’s criteria. So Y(t) is a unique solution of model (1), with the help of Lemma 1.

Boundedness and non-negativity

Theorem 2 Any solutions originating from the initial condition (S(t0), I(t0), R(t0)) in model (1) are
characterized by non-negative values.

Proof Let Y(t0) = (S(t0), I(t0), R(t0)) ∈ Γ+ be the initial solution of (1). Firstly, we shall prove
that S(t) ≥ 0 for all t ≥ 0. For this, we assume that S(t) ≥ 0 is not true. Then there exists a τ1 > 0,
such that 

S(t) > 0 for t0 ≤ t < τ1,
S(t) = 0 for t = τ1,
S(t) < 0 for τ1 < t < τ1 + ϵ1 for ϵ1 > 0.

With the help of system (1), we have

C
t0

Dα
t S(t)|S(τ1)=0 = Λ > 0.

Using Lemma 2, for any 0 < ϵ1 << 1, we have S(τ1 + ϵ1) = S(τ1) +
1
α

dα

dtα S(t)ϵ1
α. As a result,

S(τ1 + ϵ1) ≥ 0, contradicts our assumption that S(t) < 0 for τ1 < t < τ1 + ϵ1. Therefore, we get
S(t) ≥ 0, ∀t ∈ [t0,∞). Secondly, we shall prove that I(t) ≥ 0 for all t ≥ 0. For this, we assume
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that I(t) ≥ 0 is not true. Then there exists a τ2 > 0, such that
I(t) > 0 for t0 ≤ t < τ2,
I(t) = 0 for t = τ2,
I(t) < 0 for τ2 < t < τ2 + ϵ2 for ϵ2 > 0.

With the help of system (1), we have

C
t0

Dα
t I(t)|I(τ2)=0 = 0.

Using Lemma 2, for any 0 < ϵ2 << 1, we have I(τ2 + ϵ2) = I(τ2) +
1
α

dα

dtα I(t)ϵ2
α. As a result,

I(τ2 + ϵ2) = 0, contradicts our assumption that I(t) < 0 for τ2 < t < τ2 + ϵ2. Therefore, we get
I(t) ≥ 0, ∀t ∈ [t0,∞). Lastly, we shall prove that R(t) ≥ 0 for all t ≥ 0. For this, we assume that
R(t) ≥ 0 is not true. Then there exists a τ3 > 0, such that

R(t) > 0 for t0 ≤ t < τ3,
R(t) = 0 for t = τ3,
R(t) < 0 for τ3 < t < τ3 + ϵ3 for ϵ3 > 0.

With the help of system (1), we have

C
t0

Dα
t R(t)|R(τ3)=0 =

mI(τ3)

1 + nI2(τ3)
+ δI(τ3) > 0.

Using Lemma 2, for any 0 < ϵ3 << 1, we have R(τ3 + ϵ3) = R(τ3) +
1
α

dα

dtα R(t)ϵ3
α. As a result,

R(τ3 + ϵ3) ≥ 0, contradicts our assumption that R(t) < 0 for τ3 < t < τ3 + ϵ3. Therefore, we get
R(t) ≥ 0, ∀t ∈ [t0,∞).

Theorem 3 All solutions of system (1) are bounded.

Proof Now N(t) = S(t) + I(t) + R(t), then

C
t0

Dα
t N(t) = C

t0
Dα

t S(t) +C
t0

Dα
t I(t) +C

t0
Dα

t R(t)
= Λ − µN(t)− rI(t).

Therefore,

C
t0

Dα
t N(t) + µN(t) ≤ Λ (as I ≥ 0).

We get (using Lemma 3):

zαF(z)− zα−1N(0) + µF(z) ≤ Λ
z

, where F(z) = L {N(t)}⇒ F(z)(zα+1 + zµ) ≤ zαN(0) + Λ⇒ F(z) ≤ zαN(0) + Λ
zα+1 + zµ

=
zαN(0)

zα+1 + zµ
+

Λ
zα+1 + zµ

.
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Using inverse Laplace transform:

N(t) ≤ N(0)Eα,1(−µtα) + ΛtαEα,α+1(−µtα).

From the properties of Mittag-Leffler function [55], we get

Ec,d(x) = xEc,c+d(x) +
1

Γ(d)
.

Hence,

N(t) ≤ (N(0)−
Λ
µ
)Eα,1(−µtα) +

Λ
µ

.

As a result, the system solutions are bounded. It completes the proof of the theorem. The impact
of R(t) on the first two equations in system (1) is unaltered. System (1) might be converted to a
two-dimensional system on the presumption that the whole population N is constant. The third
equation of the system (1) is traditionally omitted. As a result, we have:

C
t0

Dα
t S(t) = Λ − µS(t)−

βS(t)I(t)
1 + γI(t)

, S(t)|t=0 = S(0) > 0,

C
t0

Dα
t I(t) =

βS(t)I(t)
1 + γI(t)

−
mI(t)

1 + nI2(t)
− (µ + r + δ)I(t), I(t)|t=0 = I(0) > 0. (2)

Equilibrium points of the model (2)

Let C
t0

Dα
t S(t) = 0 and C

t0
Dα

t I(t) = 0. The model (2) has two equilibrium points namely,

i. The infection free equilibrium is E0(
Λ
µ , 0).

ii. The endemic equilibrium is E1(S∗, I∗), where

S∗ = Λ+I∗(−m−µ−δ−r)+I∗2(Λn)−n(µ+δ+r)I∗3

µ(1+nI∗2)
and XI∗3 + YI∗2 + ZI∗ + W = 0, where X = n(µγ +

β)(µ + δ + r), Y = µn(µ + δ + r)− βΛn, Z = (µγ + β)(m + µ + δ + r) and W = µ(µ + m +

δ + r)− Λβ.

The basic reproduction number

The next-generation matrix [56] technique is used to calculate the model’s basic reproduction
number R0, which may be determined from the biggest eigenvalue of the matrix FV−1 where,

F =

[
βΛ
µ 0
0 0

]
, and V =

[
m + µ + δ + r 0

βΛ
µ µ

]
.

Therefore, R0 =
βΛ

µ(m + µ + δ + r)
.
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Stability analysis at E0

Let us consider J0(S, I) = F where,

F =

[
F11 F12
0 F22

]
,

where

F11 = −µ, F22 = −(m + µ + δ + r), F12 = −
βΛ
µ

.

Theorem 4 The point E0 of system (2) is locally asymptotically stable.

Proof At E0 the Jacobian matrix is given by

J0(
Λ
µ

, 0) =

[
−µ −

βΛ
µ

0 −(m + µ + δ + r)

]
.

The eigenvalues of the system are λ1 = −µ,λ2 = −(m + µ + δ + r). It follows that |arg(λi)| = π >
απ
2 (i = 1, 2) where 0 < α < 1. Therefore E0 is asymptotically stable locally by Lemma 5.

To discuss the global stability at E0 of system (2), first we assume that G((S(t), I(t)) = βS(t)I(t)
1+γI(t) , is

always positive, monotonically increasing and continuously differentiable for all S > 0 and I > 0.
That satisfies the following conditions [9, 57]:
C1 : G((S(t), I(t)) > 0, G

′
S((S(t), I(t)), G

′
I((S(t), I(t)) for S > 0 and I > 0.

C2 : G((S(t), 0) = G((0, I(t)) = 0, G
′
S((S(t), 0) = 0, G

′
I((S(t), 0) > 0 for S > 0 and I > 0.

C3 : G
′
I((S(t), 0) is increasing with respect to S(t) > 0.

C4 : G
′
S((S0,0)

G ′
I ((S(t),0)

< 1 for S(t) > S0;
G

′
S((S0,0)

G ′
I ((S(t),0)

> 1 for S(t) ∈ (0, S0).

Theorem 5 Suppose that (C1) to (C4) are satisfied, the point E0 of system (2) is globally asymptotically
stable.

Proof Let L be the Lyapunov function defined as:

L = (S − S0 −

∫S

S0

lim
t→0+

G(S0, I)
G(g, I)

dg) + I.

The aforementioned function’s time derivative is

C
t0

Dα
t L = (1 − S

S0
)C

t0
Dα

t S +C
t0

Dα
t I

= −
µ(S − S0)

2

S
+

βS0 I
1 + γI

−
mI

1 + nI2 − (µ + δ + r)I

−
µ(S − Λ

µ )
2

S
+

(µ + δ + r + m)(R0 − 1)I
1 + γI

−
[−γ(µ + δ + r + m) + mnI − nγ(δ + r + m)I2]I2

(1 + γI)(1 + nI2)
.
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Since all parameters of the system are positive, then C
t0

Dα
t L ≤ 0 if R0 ≤ 1 and C

t0
Dα

t L = 0 if
S = S0 = Λ

µ , I = I0 = 0. The point E0 is asymptotically stable globally.

Stability analysis at E1

At E1(S∗, I∗), we get

J(S∗, I∗) =
[

E F
G H

]
,

where

E = −µ −
βI∗

1 + γI∗
,

F = −
βS∗

(1 + γI∗)2 ,

G =
βI∗

(1 + γI∗)
,

H =
βS∗

(1 + γI∗)2 −
m(1 − nI∗

2
)

(1 + nI∗2)2
− (µ + δ + r).

Theorem 6 The point E1(S∗, I∗) of system (2) is asymptotically stable locally.

Proof The characteristic equation is λ2 + (E + H)λ + (EH − FG) = 0. We have −(E + H) < 0
and the roots of the characteristic equation are

λ1,2 =
−(E + H)

2
±

√
(E + H)2 − 4(EH − FG)

2
.

If EH > FG then
∣∣arg(λ1,2)

∣∣ = π > απ
2 ; 0 < α < 1, since (E + H)2 − 4(EH − FG) = (E − H)2 +

4FG. Using Lemma 5, the point E1 is locally asymptotically stable in SI plane.

Theorem 7 The point E1(S∗, I∗) of system (2) is globally asymptotically stable.

Proof Let us consider the following hypothesis:

H(1) :
mI∗

1 + nI∗2 +
(1 + I)βS∗ I∗

1 + IγI∗
+

m
1 + nI∗2

≤ [
mI

1 + nI2 +
βS∗2

S + SγI∗
+ I∗(

Sβ

1 + γ
+

m
1 + nI2 I∗2 )].

Since (S∗, I∗) is the endemic equilibrium point of model (2), then

Λ − µS∗ =
βS∗ I∗

1 + γI∗
,

βS∗ I∗

1 + γI∗
=

mI∗

1 + nI∗2 + (µ + δ + r)I∗. (3)

Let us consider the Goh-Volterra form as

W(S, I) =
(

S − S∗ − S∗ ln
S
S∗

)
+

(
I − I∗ − I∗ ln

S
S∗

)
. (4)
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Now, along the integral curves of (2):

C
t0

Dα
t W(S, I) ≤ S − S∗

S
C
t0

Dα
t S(t) +

I − I∗

I
C
t0

Dα
t I(t) (using Lemma 6)

=
mI∗

1 + nI∗2 +
(1 + I)βS∗ I∗

1 + IγI∗
+

m
1 + nI∗2

−[
mI

1 + nI2 +
βS∗2

S + SγI∗
+ I∗(

Sβ

1 + γ
+

m
1 + nI2 I∗2 )] (using (4)).

Hence, by H(1), we have

C
t0

Dα
t W(S, I) ≤ 0, ∀(S, I) ∈ Ω, (5)

and C
t0

Dα
t W(S, I) = 0 if (S, I) = (S∗, I∗). So, the point E1(S∗, I∗) is globally asymptotically stable.

5 SIR model with optimal control

One of the most important tools in the fight against infectious illnesses is the treatment rate. On
the subject of optimal control theory in fractional derivatives, Ding et al. [58] and Agarwal et al.
[59] have contributed. The fractional optimum control principle is fundamentally challenged by
Pontryagin’s maximum principle [60]. Our goal is to utilize the control measure v (0 ≤ v(t) ≤ 1)
to account for the value of immunization and to choose the optimum control v∗ to reduce the cost
function J(v) of the control strategy. The cost function:

J(v∗) = min (J(v(t))) with J(v) =
(∫ t f

0
[I + A1v2] dt

)
, (6)

subject to

C
t0

Dα
t S(t) = Λ − µS(t)−

βS(t)I(t)
1 + γI(t)

, S(0) > 0,

C
t0

Dα
t I(t) =

βS(t)I(t)
1 + γI(t)

−
vI(t)

1 + nI2(t)
− (µ + δ + r)I(t), I(0) > 0,

C
t0

Dα
t R(t) =

vI(t)
1 + nI2(t)

+ δI(t)− µR(t), R(t)|t=0 = R(0) > 0, (7)

where 0 ≤ v(t) ≤ 1.

Theorem 8 Let v(t) be a measurable control function on [0, t f ], with v(t) ∈ [0, 1]. Then there exists an

optimal control v∗ to minimize J(v) of (6) with v∗=max [min(v, 1), 0], v =
(ϵ2 − ϵ3)I

2A1(1 + nI2)
.

Proof The following method has been used to study the Hamiltonian:

H = [I + A1v2] + ϵ1(Λ − µS(t)−
βS(t)I(t)
1 + γI(t)

) + ϵ2(
βS(t)I(t)
1 + γI(t)

−
vI(t)

1 + nI2(t)
− (µ + δ + rI(t))

+ ϵ3(
vI(t)

1 + nI2(t)
+ δI(t)− µR(t)),
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with adjoint variables ϵi(t), i = 1, 2, 3 expressed as:

RL
t0

Dα
t ϵ1(t)(t) = −

∂H
∂S

= −ϵ1(−µS(t)−
βI

1 + γI
)− ϵ2

βI
1 + γI

,

RL
t0

Dα
t ϵ2(t)(t) = −

∂H
∂I

= −1 − ϵ1(−
βS

(1 + γI)2 )− ϵ2(−
βS

(1 + γI)2 −
v(1 − nI2)

(1 + nI2)2

−(µ + δ + r))− ϵ3(
v(1−nI2)
(1+nI2)2 + δ),

RL
t0

Dα
t ϵ3(t)(t) = −

∂H
∂R

= ϵ3µ.

As a result, the issue of decreasing the Hamiltonian with regard to the control is now the problem
of finding v∗ that minimizes H in the context of (7). The Pontryagin principle is then used to
produce the following ideal circumstance:

∂H
∂v

= 2A1v + (ϵ2 − ϵ3)(
I

1 + nI2 ).

It may be solved with adjoint variables and state variables to produce:

v =
(ϵ2 − ϵ3)I

2A1(1 + nI2)
.

Consider the control restrictions and the sign of the function ∂H
∂v for the best control v∗. As a result,

we get

v∗ =


0 i f ∂H

∂v < 0,

v i f ∂H
∂v = 0,

1 i f ∂H
∂v > 0.

The ideal circumstance for the model system may be obtained by applying v∗ to the equation
above (7).

6 Numerical procedure

The model system (2), as stated in Theorem 1, has a single solution. Taylor’s theorem will be used
to find the model’s numerical solution [60]. Then,

C
t0

Dα
t S(t) = u1(t, S, I), S(0) = S0, t > 0. (8)

Consider the set of points [0, A] as the points on which we are prepared to approximate the
system’s solution. Actually, we are unable to calculate S(t), which will be the system’s necessary
solution. We divide [0, A], into P subintervals [tj, tj+1] of length, i.e., w = A

P , using the nodes
tj = jw, for j = 0, 1, 2, ..., P. We extend the Taylor’s theorem at about t = t0, we have a constant
k ∈ [0, A], so that

S(t)= S(t0)+ C
t0

Dα
t S(t)

{ wα

Γ(α + 1)

}
+ C

t0
D2α

t [S(t)]t=k

{ w2α

Γ(2α + 1)

}
.

Now substitute C
t0

Dα
t S(t) = u1(t0, S(t0), I(t0)) and t = t0 in the above equation which provides

S(t1)=S(t0)+u1(t0, S(t0), I(t0))
{ wα

Γ(α + 1)

}
+C

t0
D2α

t [S(t)]t=k

{ w2α

Γ(2α + 1)

}
.
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If m is small, we ignore the higher terms, then

S(t1)=S(t0)+ u1(t0, S(t0), I(t0))
{ wα

Γ(α + 1)

}
. A general formula of expanding about tj = tj + w,

provides

S(tj + 1)=S(tj)+ u1(tj, S(tj), I(tj))
{ wα

Γ(α + 1)

}
.

Similarly, we have

I(tj + 1)=I(tj)+ u1(tj, S(tj), I(tj))
{ wα

Γ(α + 1)

}
.

7 Numerical discussion

In this part, we evaluate and verify the analytic results of our model system (1) using detailed
numerical simulations. Although the majority of fractional order differential equations lack accu-
rate analytic solutions, approximation, and numerical methods have been devised. Through the
mathematical software MATLAB (2018a), we have employed Taylor’s theorem in the numerical
scheme. Following are several categories for the numerical output of model simulations and the
accompanying findings:

Table 2. Parameter values for numerical study

Parameters Values Reference
Λ 5 Estimated
µ 0.05 Assumed
β 0.003 Assumed
γ 0.06 Assumed
m 0.03 Assumed
n 0.04 Assumed
δ 0.002 Assumed
r 0.02 Assumed

Case 1: Dynamical features of the whole population for different fractional orders The parame-
ters’ values in Table 2 are used to examine people’s dynamic behaviour. All individuals’ behaviour
over time for different fractional orders α is shown in Figure 2 through Figure 4. The number of
susceptible people rises as α moves from 0.90 to 0.98, as seen in Figure 2. The number of infected
people rises over time as α rises, as seen in Figure 3. When α in Figure 4 goes from 0.90 to 0.98,
there are more people who have been found.

Case 2: Stability analysis of the proposed model Figure 5 to Figure 7 depicts the global
stability of system (1) at E1 with different initial condition taking α=0.90, 0.94, 0.98, confirming
our theoretical results in Theorem 6. Case 3: Impact of α on S and I Figure 8 and Figure 9 show
the effects of α on susceptible and infected people. It can be shown from Figure 8 that the number
of susceptible persons rises as α increases. Figure 9 shows that the number of infected people first
declines but then rises over time.
Case 4: Mean density of S and I under γ values Plotting the mean densities of S and I with

respect to γ for different fractional orders is shown in Figure 10 and Figure 11. As seen in Figure 10,
the mean density of susceptible people rises as the value of α rises. Figure 11 shows that as the
values of α fall, the mean density of infected people rises with regard to γ.
Case 5: Mean density of S and I under δ values Figure 12 and Figure 13 shows the plot of mean

density of S and I with respect to δ for various fractional order. Figure 12 shows that the mean
density of susceptible people rises as the value of α rises. Figure 13 shows that as the values of α

decline, the mean density of infected people rises with regard to δ.
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Figure 2. The behavior of Susceptible individuals for values of α = 0.90, 0.94, 0.98
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Figure 3. The behavior of Infected individuals for values of α = 0.90, 0.94, 0.98
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Figure 4. The behavior of Recovered individuals for values of α = 0.90, 0.94, 0.98

0 20 40 60 80 100

Infected(I)

0

50

100

150

S
u
sc

e
p
tib

le
(S

)

For =0.9

E
1

Figure 5. Phase portrait diagram for values of α = 0.90
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Figure 6. Phase portrait diagram for values of α = 0.94
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Figure 7. Phase portrait diagram for values of α = 0.98
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Figure 10. Mean density of S under γ for α = 0.90, 0.94, 0.98

Figure 11. Mean density of I under γ for α=0.90, 0.94, 0.98
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Figure 12. Mean density of S under δ for α=0.90, 0.94, 0.98

Figure 13. Mean density of I under δ for α = 0.90, 0.94, 0.98
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Case 6: Variation of γ under S and I for α = 0.98 Figure 14 and Figure 15 shows that the effect
of γ on S and I with time for α=0.98. Figure 14 demonstrates a rise in the number of vulnerable
people as the inhibitory rate γ drops and reaches its stable state, but the illness is not completely
eradicated since it will continue to exist at a much lower level. We noticed that the infected popu-
lation drops when the inhibitory rate γ rises in Figure 15. Thus, it is assumed that preventative
actions conducted by vulnerable and sick individuals will aid in reducing the spread of illness.

Figure 14. Variation of γ under S for α=0.98

Figure 15. Variation of γ under I for α=0.98
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Case 7: Variation of δ under S and I for α=0.98. Figure 16 and Figure 17 shows that the effect
of δ on S and I with time for α=0.98. As the recovery rate δ declines and reaches its steady
state, Figure 16 depicts a rise in the number of sensitive people. In Figure 17, we observed that the
infected population decreases when the recovery rate δ changes from 0.001 to 0.003.

Figure 16. Variation of δ under S for α=0.98

Figure 17. Variation of δ under I for α=0.98
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Case 8: Optimal control Figure 18 and Figure 19 depict the time series of people who are vul-
nerable to infection, those who have been infected, and those who have recovered over a time
period of [0, 100], with optimum control using fractional order α=0.9. Infectious illness prevention
depends heavily on treatment rates, and several theories have been put out in which vaccination
rates are seen as very advantageous. The reproduction number R0 falls as a consequence of the
inclusion of the treatment rate parameter. We chose a final time of t f =100 for the simulation of the
optimum control problem governed by model (1), which corresponds to Table 2. The time series
of the ideal cost J∗ and the ideal control variable v∗ are shown in Figure 20 and Figure 21.
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Figure 18. When α=0.9, the time series of the model system (1) corresponds to Table 2
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Figure 19. When α=0.9, the time series of the model system (1) corresponds to Table 2
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Figure 20. With parameter values matching to Table 2 for α=0.9, a time series of the ideal control variable v∗ is
produced
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Figure 21. With parameter values matching to Table 2 for α=0.9, a time series of the ideal cost J∗ is produced

8 Conclusion

The mathematical model used in this article aims to depict the dynamics of infectious disease when
the ratio of infected to susceptible populations is high, taking into account the effects of inhibitory
activity, behavioral changes that occur during epidemics, and the limitations of treatment facilities.
Analyzing the stability characteristics of equilibrium points corresponding to no infection and
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sustained infection states, it is shown that the disease-free equilibrium is locally asymptotically
stable when R0 < 1 and unstable when R0 > 1.
The R-H criteria has been used to examine the stability of the model’s endemic equilibrium. The
simulation results predict that the infection will worsen as the rate of transmission rises, but that
it will stabilize due to the accessibility of treatment centres. Furthermore, the prevalence of the
infection decreases proportionally when the amount of suppression used by the affected people
increases. The results of our simulation also showed that, in order to successfully eradicate the
virus, the treatment of the population must be closely coordinated with the resources at hand.
Understanding the complexities of disease outbreaks is made possible by the use of epidemic
modelling. Numerical simulations provide the visualization of the efficacy of theoretical solutions.
Comprehensive information, suitable infectious disease treatment methods, and the availability of
healthcare services are required for the successful decrease of infection within society. In addition,
we showed the global stability of the equilibrium state by choosing an appropriate Lyapunov
function.
The importance of fractional order to population dynamics has also been noted. The optimum
solution to the optimal control issue must meet certain requirements, which we have established
using Pontryagin’s Maximum Principle. It is obvious that the disease’s spread can be stopped
and eliminated if the control measure v∗ is used. Additionally, Theorem 8 has identified the ideal

control value v∗ to reduce the cost of vaccination, as shown by J(v) =
(∫t f

0 [I + A1v2] dt
)

. For
optimum control, we presume a final time t f = 100. As a consequence, changing the derivatives’
order may change the stability requirements for equilibrium locations without changing any other
parametric variables. We are unable to analyze our findings using an integer order method since
we have achieved so little theoretical advancement in this fractional order framework. We find a
variety of biological modelling outcomes based on fractional differential equations in this work.
The proposed model may be analyzed further to explore chaotic solutions and various forms of
bifurcations by incorporating time delay parameters. More than one control parameter may be
used to better understand the treatment strategies and management of the spread of the disease.
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