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Abstract
In this study, brucellosis dynamics between interspecies are discussed with the Atangana-Baleanu
fractional derivative to examine the transmission of brucellosis by its behavior. The recovered compart-
ment, recruitment, and natural death rate for humans are considered for the fractional order model to
analyze the transmission dynamics in more detail from an epidemiological point of view. Additionally,
the saturated incidence rate is suggested for brucellosis as indirectly transmitted to individuals from
the environment. By fixed point theory, it is verified that developed fractional transmission dynamics
have a unique solution. The model under consideration employs the Adams-type predictor-corrector
method for numerical solution. All comparative results are plotted by MATLAB.
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1 Introduction

Brucellosis is a zoonotic illness that can be transferred to individuals by direct contact with infected
animals or indirectly from Brucella in a contaminated environment [1]. Humans are transmitted by
it in various manners. Firstly, humans can contract brucellosis by consuming rare cooked meat or
unpasteurized dairy products. Second, researchers studying bacteria in a laboratory environment
can become infected by breathing in Brucella. Finally, it can be transmitted to veterinarians or
staff working who come into intimate touch with the skin deformation or droppings of infected
animals. Furthermore, it is known that human-to-human transmission is extremely uncommon
[2]. Even though the mortality from the disease is negligible in humans, brucellosis causes serious
organ damage and can continue for several years. Apart from that, the case is not thought to be so
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severe in animals. However, the infection can lead to significant financial damage by decreasing
infant survival, milk production, reproduction, and prolificacy [3, 4]. To contain these negative
results from happening, it is necessary to prevent brucellosis transmission in animals. Vaccination
is often the first preferred way for transmissible diseases, and animals can be vaccinated against
brucellosis. Still, it is plenty challenging to eradicate the infection by only vaccination [5]. Detection
and elimination of infected animals are other significant measures. It is necessary to understand
the dynamics of brucellosis in order to apply additional preventive measures.
Epidemiological models can analyze the course of the diseases since they are constructed by
considering the characteristics of the infection and the nature of each one [6–8]. On the contrary,
fractional derivatives have allowed many real-world problems to be solved, as they can fulfill
complex manners due to their definition [9–12]. Therefore, epidemiological models are analyzed
according to the transmission dynamics behavior when combined with fractional derivatives [13–
20]. In this context, various mathematical models are discussed by researchers for predicting the
dynamics of brucellosis, both integer and fractional. Li et al. examined the impact of preventative
strategies and different incidence rates on the transmission of Brucella in China via integer-order
models [21, 22].
Lolika et al. and Nyerere et al. proposed integer-order dynamical models for the spreading of bru-
cellosis, incorporating the impacts of seasonality [23, 24]. In addition, Nyerere et al. investigated
the efficacy of treatment for humans by presenting another integer-order model for brucellosis
spread among humans and animals [25]. Sun et al. offered a systematic examination of the trans-
mission dynamics of several brucellosis integer-order mathematical models with their application
in China [26]. Lolika and Helikumi proposed and studied two integer-order mathematical models
for human brucellosis transmission, in which humans become infected through contact with
wildlife and cattle [27]. Another important research topic that has attracted attention recently is
the interspecies transmission of brucellosis. Ma et al. posed a discrete model for sheep-human
brucellosis transmission dynamics in Jilin, China, and investigated the effectiveness of control
measures [28]. Abagna et al. developed a deterministic model to investigate the transmission
dynamics and control of bovine brucellosis in a cattle herd [29]. Thongtha and Modnak formulated
an interactive bison–human environment mathematical model that contains the impact of human
transmission, chronic brucellosis, and control strategy on the brucellosis dynamics [30]. More
than that, Peter constructed the fractional model based on hypothetical data, only considering the
transmission of brucellosis among cows [31]. Loika and Helikumi describe a fractional model that
reveals the transmission of brucellosis among sheep only, utilizing real data from Egypt [32].
As mentioned above, few studies in the literature discuss the fractional-order brucellosis model.
Unfortunately, these models do not deal with the transmission of brucellosis among different
species of populations. However, since brucellosis increases by showing an exponential behavior
depending on the transmission rate of the infection [33], it would be more realistic to study it with
a derivative operator that had this behavior. Thanks to the crossover property of the Atangana-
Baleanu derivative in terms of Caputo (ABC), it not only allows the explanation of more complex
nonlinear phenomena but also does not cause singularity problems at the beginning and end of
biological processes. This provides a better insight into the models at their critical points. Due to
all these advantages, the ABC derivative has been quite successful in modeling infectious diseases
under reality in recent years [34–36].
Incidence rates are another significant element in epidemiological models because they charac-
terize the functional relationship between susceptible and infected people. The incidence rate in
epidemiological models is directly proportional to the population’s lifestyle and overpopulation
and is a consideration that especially impacts the dynamics of transmission. To illustrate the
standard incidence rate is expressed based on the total population, while the bi-linear incidence
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rate is associated with the law of mass action [37]. The saturated incidence rate improved by
Capasso and Serio [38] is frequently favored to describe indirect transmission from bacterial
infections such as cholera and brucellosis [22, 26, 39–41], as it causes a saturation level when the
exposed (infected) individuals achieve their utmost. Since the amount of Brucella that causes
infection by interacting is present at this incidence rate, the interaction rate is controlled with fitting
parameters by determining the behavioral change and population density of infected individuals.
For bacterial diseases, the saturated incidence rate appears to be closer to reality than the bilinear
incidence rate.
Motivated by continuing investigation into this topic, in this study, the deficiencies in the trans-
mission model of brucellosis between sheep and humans proposed by Hou et al. with data from
the Inner Mongolia region of China are dealt with and discussed via ABC derivative [42]. As far
as we know, the interspecific brucellosis transmission model with ABC derivative has not yet been
examined. It is also considered the recovered compartment (with recovery rate) for the human
population in the model, the recruitment rate for susceptible humans, and the mortality rate for all
humans. Besides, indirect brucellosis transmission is given with a saturated incidence rate instead
of the bilinear incidence rate for a more realistic analysis. The unit consistency of the model is
also included. It is not always possible to achieve the exact solution of nonlinear fractional-order
models. On that account, according to the fixed point theory, it is shown that there exists a unique
solution to the fractional brucellosis model. Then, the Adam-type predictor-corrector method is
utilized to perform the numerical solution of the model.
The remainder of this article is structured as follows: Section 2 presents some primary concepts
of fractional calculus and the developed interspecies fractional-order brucellosis transmission
model. Section 3 employs fixed-point theory to demonstrate the existence and uniqueness of the
model of solutions. Section 4 is devoted to the numerical solution and discussion. Finally, Section 5
includes conclusions of the analysis work and gives future direction.

Preliminaries

Here, more details and some definitions and concepts necessary for the completion of this study
are presented.

Definition 1 ([43]) For 0 ≤ α ≤ 1 and f ∈ H1 (a, b), the α-order left and right ABC fractional derivatives
of the f are expressed as

ABC
aDα

t f (t) =
M (α)

1 − α

∫ t

a

d f (ϱ)
dϱ

Eα

[
−

α

1 − α
(t − ϱ)α

]
dϱ, (1)

ABC
tDα

b f (t) =
−M (α)

1 − α

∫ b

t

d f (ϱ)
dϱ

Eα

[
−

α

1 − α
(ϱ − t)α

]
dϱ, (2)

where Eα is the Mittag-Leffler function and M (α) is the normalization function such as M (α) = 1−
α + α

Γ(α) with M (0) = M (1) = 1.

Definition 2 ([43]) The Atangana-Baleanu fractional integral of α-order of the f is expressed as

ABC
a Iα

t f (t) =
1 − α

M (α)
f (t) +

α

M (α) Γ (α)

t∫
a

(t − ϱ)α−1 f (ϱ) dϱ. (3)
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2 Fractional-order brucellosis transmission model

In this section, not only the time derivative is replaced within the ABC sense to examine the
brucellosis model by the transmission behavior, but it is also developed by eliminating the
deficiencies in the model introduced by Huo et al. [42] for interspecies brucellosis transmission.
The brucellosis model as introduced in [42] is given by

dS
dt

= A − βS (E + I)− ϕSB − (µ + ν) S + δV,

dV
dt

= νS − (µ + δ)V − εβV (E + I)− εϕVB,

dE
dt

= β (S + εV) (E + I) + ϕ (S + εV) B − (σ + µ) E,

dI
dt

= σE − (µ + c) I,

dB
dt

= k (E + I)− (d + nτ) B,

dSh
dt

= −βhSh (E + I)− ϕhShB + σh (1 − p) Iah,

dIah
dt

= βhSh (E + I) + ϕhShB − σh Iah,

dIch
dt

= σh pIah.

(4)

In model (4), susceptible sheep are denoted S, vaccinated sheep by V, exposed sheep by E, and
infected sheep by I. The total number of sheep is N = S+V +E+ I. The number of infectious units
in the environment is represented by B. Susceptible humans are signified by Sh, acute infection
humans by Iah, and chronic infection humans by Ich. Acute infection humans, if they do not
recover, pass into the compartment chronic infection. Total human population Nh = Sh + Iah + Ich.
The birth and mortality rates for sheep are A and µ, respectively. Susceptible sheep interact with
exposed and infected sheep at the rate of β. Brucella is transmitted to susceptible sheep at a rate
ϕ. Also, Susceptible sheep are vaccinated at the rate υ, whereas ε is an incorrect vaccination rate.
The immunity of vaccinated sheep is lost at a rate of δ. Exposed sheep are infected at the rate σ,
and infected sheep are culled at a rate c. Brucella from exposed and infected sheep are shed at a
rate k. While Brucella decays in the environment at a rate d, it is effectively disinfected at a rate τ.
No data are reported on the transmission among humans of brucellosis between 2005 and 2010,
so the rate of transmission among humans is assumed to be zero. Additionally, in the model (4),
brucellosis transmission humans directly from sheep at a rate of βh and indirectly from Brucella
at a rate of ϕh. Acute infection humans become chronic infection at a rate σh p. Chronic infection
humans are also susceptible to the σh (1 − p) rate. Since the study of Kermack and McKendrick
[44], epidemiological models have been created with the recovered compartment to observe the
spread of the infection in more detail. However, in model (4), there is no recovered compartment
for humans. Additionally, human birth and death rates are other important parameters to consider
when analyzing the population. Note that these parameters are not adapted to model (4). For this
reason, the model is developed by considering the mentioned deficiencies and is introduced with
the ABC derivative so that it can be discussed realistically.

The classical derivative has the s−1 second dimension to represent s seconds, while the ABC
0Dα

t
fractional derivative has the s−α dimension. The auxiliary parameter θ with second dimension s is
employed for unit consistency [45]. The following is the fractional-order brucellosis transmission
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model for 0 ≤ α ≤ 1 and t ≥ 0:

θα−1 ABC
0Dα

t S = Λs − βS (E + I)− ϕ SB
ρ+B − (µ + ν) S + δV,

θα−1 ABC
0Dα

t V = νS − (µ + δ)V − εβV (E + I)− εϕ VB
ρ+B ,

θα−1 ABC
0Dα

t E = β (S + εV) (E + I) + ϕ
(S+εV)B

ρ+B − (σ + µ) E,
θα−1 ABC

0Dα
t I = σE − (µ + c) I,

θα−1 ABC
0Dα

t B = k (E + I)− (d + nτ) B,
θα−1 ABC

0Dα
t Sh = Λh − βhSh (E + I)− ϕh

ShB
ρ+B − µhSh,

θα−1 ABC
0Dα

t Iah = βhSh (E + I) + ϕh
ShB
ρ+B − (σh + µh) Iah,

θα−1 ABC
0Dα

t Ich = σh pIah − (γch + µh) Ich,
θα−1 ABC

0Dα
t Rh = σh (1 − p) Iah + γch Ich − µhRh,

(5)

where the initial conditions are{
S (0) = S0, V (0) = V0, I (0) = I0, E (0) = E0, B (0) = B0,
Sh (0) = Sh0, Iah (0) = Iah0, Ich (0) = Ich0, Rh (0) = Rh0.

(6)

Figure 1. Flowchart of the direct and indirect transmission of the developed fractional brucellosis model

As seen in Figure 1, the human population is separated into four classifications based on their
epidemiological stages. The compartment Rh in the model (5) describes recovered humans.
To elaborately investigate these stages, it is assumed that there is a recruitment rate Λh for
compartment S and a natural death rate µh for all compartments. Acute and chronic infections
are recovered with rates σh (1 − p) and γch, respectively. Also, susceptible sheep and humans
catch infections indirectly at rates ϕ B

ρ+B and ϕh
B

ρ+B , in which ϕ and ϕh represent interaction rates
with the bacteria-contaminated environment, ρ is the half-saturation constant of the Brucella
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population and 1
ρ+B is the inhibition effect as well. Hence, B

ρ+B is the probability of exposed sheep
and acute infection in humans owning the infection with symptoms, given interaction with the
contaminated environment. Although the saturated incidence rate initially behaves linearly, the
probability of infection continues to increase to a specific level as the bacteria reproduce. That is to
say that even if Brucella in a contaminated environment is in extraordinary numbers, individuals
indirectly interacting with more Brucella will not significantly augment the risk to their already
threatened health. In this way, the infection transmission level will saturate at rates ϕ and ϕh.
The amount of Brucella interacted to begin infection is already within this incidence rate. Thus,
the saturated incidence rate appears more sensible than the bilinear incidence rate for indirect
transmission of bacterial diseases as it prevents the interaction rate from achieving extraordinary
numbers by determining appropriate parameters based on the behavioral change and population
density of exposed (infected) individuals.

3 Existence and uniqueness

In this section, the existence of a unique solution for the developed brucellosis model is analyzed.
By fixed point theory, it is verified that developed fractional transmission dynamics have a unique
solution with the initial conditions (6). Suppose a continuous R → R function described by H (J )
including the sup norm characteristic is a Banach space on J = [0, T] and

Q = H (J )×H (J )×H (J )×H (J )×H (J )×H (J )×H (J )×H (J )×H (J ) ,

with norm ∥(S, V, E, I, B, Sh, Iah, Ich, Rh)∥ = ∥S∥+ ∥V∥+ ∥E∥+ ∥I∥+ ∥B∥+ ∥Sh∥+ ∥Iah∥+ ∥Ich∥+
∥Rh∥, where ∥S∥ = sup

t∈J
|S| , ∥V∥ = sup

t∈J
|V (t)| , ∥E∥ = sup

t∈J
|E (t)| , ∥I∥ = sup

t∈J
|I (t)| , ∥B∥ =

sup
t∈J

|B (t)| , ∥Sh∥ = sup
t∈J

|Sh (t)| , ∥Iah∥ = sup
t∈J

|Iah (t)| , ∥Ich∥ = sup
t∈J

|Ich (t)| , ∥Rh∥ = sup
t∈J

|Rh (t)| .

Implementing the fractional integral described in (3) to each side of Eq. (5), the model is written
below:

S (t)− S (0) = θ1−α ABC
0 Iα

t

{
Λs − βS (t) (E (t) + I (t))− ϕ

S(t)B(t)
ρ+B(t) − (µ + ν) S (t) + δV (t)

}
,

V (t)− V (0) = θ1−α ABC
0 Iα

t

{
νS (t)− (µ + δ)V (t)− εβV (t) (E (t) + I (t))− εϕ

V(t)B(t)
ρ+B(t)

}
,

E (t)− E (0) = θ1−α ABC
0 Iα

t

{
β (S (t) + εV (t)) (E (t) + I (t)) + ϕ

(S(t)+εV(t))B(t)
ρ+B(t) − (σ + µ) E (t)

}
,

I (t)− I (0) = θ1−α ABC
0 Iα

t {σE (t)− (µ + c) I (t)} ,
B (t)− B (0) = θ1−α ABC

0 Iα
t {k (E (t) + I (t))− (d + nτ) B (t)} ,

Sh (t)− Sh (0) = θ1−α ABC
0 Iα

t

{
Λh − βhSh (t) (E (t) + I (t))− ϕh

Sh(t)B(t)
ρ+B(t) − µhSh (t)

}
,

Iah (t)− Iah (0) = θ1−α ABC
0 Iα

t

{
βhSh (t) (E (t) + I (t)) + ϕh

Sh(t)B(t)
ρ+B(t) − (σh + µh) Iah (t)

}
,

Ich (t)− Ich (0) = θ1−α ABC
0 Iα

t {σh pIah (t)− (γch + µh) Ich (t)} ,
Rh (t)− Rh (0) = θ1−α ABC

0 Iα
t {σh (1 − p) Iah (t) + γch Ich (t)− µhRh (t)} .

(7)
Exerting the definition given by (3), the following expression is acquired:

S (t)− S (0) = (1−α)θ1−α

M(α)
F1 (t, S) + αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F1 (ϱ, S) dϱ,

V (t)− V (0) = (1−α)θ1−α

M(α)
F2 (t, V) + αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F2 (ϱ, V) dϱ,

E (t)− E (0) = (1−α)θ1−α

M(α)
F3 (t, E) + αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F3 (ϱ, E) dϱ,
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I (t)− I (0) = (1−α)θ1−α

M(α)
F4 (t, I) + αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F4 (ϱ, I) dϱ,

B (t)− B (0) = (1−α)θ1−α

M(α)
F5 (t, B) + αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F5 (ϱ, B) dϱ,

Sh (t)− Sh (0) =
(1−α)θ1−α

M(α)
F6 (t, Sh) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F6 (ϱ, Sh) dϱ,

Iah (t)− Iah (0) =
(1−α)θ1−α

M(α)
F7 (t, Iah) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F7 (ϱ, Iah) dϱ,

Ich (t)− Ich (0) =
(1−α)θ1−α

M(α)
F8 (t, Ich) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F8 (ϱ, Ich) dϱ,

Rh (t)− Rh (0) =
(1−α)θ1−α

M(α)
F9 (t, Rh) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F9 (ϱ, Rh) dϱ,

(8)

where the kernels are described by

F1 (t, S) = Λs − βS (t) (E (t) + I (t))− ϕ
S(t)B(t)
ρ+B(t) − (µ + ν) S (t) + δV (t) ,

F2 (t, V) = νS (t)− (µ + δ)V (t)− εβV (t) (E (t) + I (t))− εϕ
V(t)B(t)
ρ+B(t) ,

F3 (t, E) = β (S (t) + εV (t)) (E (t) + I (t)) + ϕ
(S(t)+εV(t))B(t)

ρ+B(t) − (σ + µ) E (t) ,
F4 (t, I) = σE (t)− (µ + c) I (t) ,
F5 (t, B) = k (E (t) + I (t))− (d + nτ) B (t) ,
F6 (t, Sh) = Λh − βhSh (t) (E (t) + I (t))− ϕh

Sh(t)B(t)
ρ+B(t) − µhSh (t) ,

F7 (t, Iah) = βhSh (t) (E (t) + I (t)) + ϕh
Sh(t)B(t)
ρ+B(t) − (σh + µh) Iah (t) ,

F8 (t, Ich) = σh pIah (t)− (γch + µh) Ich (t) ,
F9 (t, Rh) = σh (1 − p) Iah (t) + γch Ich (t)− µhRh (t) .

(9)

Theorem 1 If the below inequality holds

0 ≤ β (η3 + η4) + ϕ
η5

ρ + η5
< 1,

so the kernel F1 provides for Lipschitz condition and contraction.

Proof Assumed S and S1 are two functions, the undermentioned inequality is obtained:

∥F1 (t, S)− F1 (t, S1)∥ =
∥∥∥Λs −

(
β (E (t) + I (t)) + ϕ

B(t)
ρ+B(t) + µ + ν

)
S (t) + δV (t)

−
(

Λs −
(

β ( E (t) + I (t)) + ϕ
B(t)

ρ+B(t) + µ + ν
)

S1 (t) + δV (t)
)∥∥∥

≤
(

β ( E (t) + I (t)) + ϕ
B(t)

ρ+B(t) + µ + ν
)
∥S (t)− S1 (t)∥ .

Let ϖ1 =
(

β ( E (t) + I (t)) + ϕ
B(t)

ρ+B(t) + µ + ν
)

, where ∥S∥ ≤ η1, ∥V∥ ≤ η2, ∥E∥ ≤ η3, ∥I∥ ≤ η4,
∥B∥ ≤ η5, ∥Sh∥ ≤ η6, ∥Iah∥ ≤ η7, ∥Ich∥ ≤ η8, and ∥Rh∥ ≤ η9, are bounded functions, we have

∥F1 (t, S)− F1 (t, S1)∥ ≤
(

β (η3 + η4) + ϕ
η5

ρ + η5
+ µ + ν

)
∥S (t)− S1 (t)∥

≤ ϖ1 ∥S (t)− S1 (t)∥ .
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Thus, F1 (t, S) supplies the Lipschitz condition with Lipschitz constant

ϖ1 =

(
β ( E (t) + I (t)) + ϕ

B(t)
ρ + B (t)

+ µ + ν

)
.

Furthermore, 0≤ ϖ1 < 1, then kernel F1 (t, S) is a contraction. In the same manner, the Lipschitz
condition and contraction are provided by the kernels F2, F3, F4, F5, F6, F7, F8, and F9 given below:

∥F2 (t, V)−F2 (t,V1)∥ ≤ ϖ2 ∥V (t)−V1 (t)∥ ,
∥F3 (t, E)−F3 (t, E1)∥ ≤ ϖ3 ∥E (t)−E1 (t)∥ ,
∥F4 (t, I)−F4 (t, I1)∥ ≤ ϖ4 ∥I(t)−I1 (t)∥ ,
∥F5 (t, B)−F5 (t, B1)∥ ≤ ϖ5 ∥B(t)−B1 (t)∥ ,
∥F6 (t, Sh)−F6 (t, Sh1)∥ ≤ ϖ6 ∥Sh (t)− Sh1 (t)∥ ,
∥F7 (t, Iah)−F7 (t,Iah1)∥ ≤ ϖ7 ∥Iah (t)−Iah1 (t)∥ ,
∥F8 (t, Ich)−F7 (t,Ich1)∥ ≤ ϖ8 ∥Ich (t)−Ich1 (t)∥ ,
∥F9 (t,Rh)−F9 (t,Rh1)∥ ≤ ϖ9 ∥Rh (t)−Rh1 (t)∥ .

(10)

The kernels in Eq. (8) can be rewritten as:

S (t) = S (0) + (1−α)θ1−α

M(α)
F1 (t, S) + αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F1 (ϱ, S) dϱ,

V (t) = V (0) + (1−α)θ1−α

M(α)
F2 (t, V) + αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F2 (ϱ, V) dϱ,

E (t) = E (0) + (1−α)θ1−α

M(α)
F3 (t, E) + αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F3 (ϱ, E) dϱ,

I (t) = I (0) + (1−α)θ1−α

M(α)
F4 (t, I) + αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F4 (ϱ, I) dϱ,

B (t) = B (0) + (1−α)θ1−α

M(α)
F5 (t, B) + αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F5 (ϱ, B) dϱ,

Sh (t) = Sh (0) +
(1−α)θ1−α

M(α)
F6 (t, Sh) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F6 (ϱ, Sh) dϱ,

Iah (t) = Iah (0) +
(1−α)θ1−α

M(α)
F7 (t, Iah) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F7 (ϱ, Iah) dϱ,

Ich (t) = Ich (0) +
(1−α)θ1−α

M(α)
F8 (t, Ich) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F8 (ϱ, Ich) dϱ,

Rh (t) = Rh (0) +
(1−α)θ1−α

M(α)
F9 (t, Rh) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F9 (ϱ, Rh) dϱ.

(11)

Going recursively, Eq. (11) yielded

Sn (t) =
(1−α)θ1−α

M(α)
F1 (t, Sn−1) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F1 (ϱ, Sn−1) dϱ,

Vn (t) =
(1−α)θ1−α

M(α)
F2 (t, Vn−1) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F2 (ϱ, Vn−1) dϱ,

En (t) =
(1−α)θ1−α

M(α)
F3 (t, En−1) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F3 (ϱ, En−1) dϱ,
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In (t) =
(1−α)θ1−α

M(α)
F4 (t, In−1) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F4 (ϱ, In−1) dϱ,

Bn (t) =
(1−α)θ1−α

M(α)
F5 (t, Bn−1) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F5 (ϱ, Bn−1) dϱ,

Sh,n (t) =
(1−α)θ1−α

M(α)
F6

(
t, Sh,n−1

)
+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F6

(
ϱ, Sh,n−1

)
dϱ,

Iah,n (t) =
(1−α)θ1−α

M(α)
F7

(
t, Iah,n−1

)
+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F7

(
ϱ, Iah,n−1

)
dϱ,

Ich,n (t) =
(1−α)θ1−α

M(α)
F8

(
t, Ich,n−1

)
+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F8

(
ϱ, Ich,n−1

)
dϱ,

Rh,n (t) =
(1−α)θ1−α

M(α)
F9

(
t, Rh,n−1

)
+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F9

(
ϱ, Rh,n−1

)
dϱ,

(12)

along with the initial conditions S (0) = S0, V (0) = V0, I (0) = I0, E (0) = E0, B (0) = B0,
Sh (0) = Sh0, Iah (0) = Iah0, Ich (0) = Ich0, and Rh (0) = Rh0. By taking the difference between
successive terms, the following equalities are reached:

ψ1n (t) = Sn (t)− Sn−1 (t) =
(1−α)θ1−α

M(α)
{F1 (t, Sn−1)− F1 (t, Sn−2)}

+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1

{F1 (ϱ, Sn−1)− F1 (ϱ, Sn−2)} dϱ,
(13)

ψ2n (t) = Vn (t)− Vn−1 (t) =
(1−α)θ1−α

M(α)
{F2 (t, Vn−1)− F2 (t, Vn−2)}

+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1

{F2 (ϱ, Vn−1)− F2 (ϱ, Vn−2)} dϱ,
(14)

ψ3n (t) = En (t)− En−1 (t) =
(1−α)θ1−α

M(α)
{F3 (t, En−1)− F3 (t, En−2)}

+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1

{F3 (ϱ, En−1)− F3 (ϱ, En−2)} dϱ,
(15)

ψ4n (t) = In (t)− In−1 (t) =
(1−α)θ1−α

M(α)
{F4 (t, In−1)− F4 (t, In−2)}

+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1

{F4 (ϱ, In−1)− F4 (ϱ, In−2)} dϱ,
(16)

ψ5n (t) = Bn (t)− Bn−1 (t) =
(1−α)θ1−α

M(α)
{F5 (t, Bn−1)− F5 (t, Bn−2)}

+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1

{F5 (ϱ, Bn−1)− F5 (ϱ, Bn−2)} dϱ,
(17)
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ψ6n (t) = Sh,n (t)− Sh,n−1 (t) =
(1−α)θ1−α

M(α)

{
F6

(
t, Sh,n−1

)
− F6

(
t, Sh,n−2

)}
+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1 {F6

(
ϱ, Sh,n−1

)
− F6

(
ϱ, Sh,n−2

)}
dϱ,

(18)

ψ7n (t) = Iah,n (t)− Iah,n−1 (t) =
(1−α)θ1−α

M(α)

{
F7

(
t, Iah,n−1

)
− F7

(
t, Iah,n−2

)}
+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1 {F7

(
ϱ, Iah,n−1

)
− F7

(
ϱ, Iah,n−2

)}
dϱ,

(19)

ψ8n (t) = Ich,n (t)− Ich,n−1 (t) =
(1−α)θ1−α

M(α)

{
F8

(
t, Ich,n−1

)
− F8

(
t, Ich,n−2

)}
+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1 {F8

(
ϱ, Ich,n−1

)
− F8

(
ϱ, Ich,n−2

)}
dϱ,

(20)

ψ9n (t) = Rh,n (t)− Rh,n−1 (t) =
(1−α)θ1−α

M(α)

{
F9

(
t, Rh,n−1

)
− F9

(
t, Rh,n−2

)}
+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1 {F9

(
ϱ, Rh,n−1

)
− F9

(
ϱ, Rh,n−2

)}
dϱ.

(21)

In addition, it is obvious that Sn (t) =
∑n

i=0 ψ1i (t), Vn (t) =
∑n

i=0 ψ2i (t), En (t) =
∑n

i=0 ψ3i (t),
In (t) =

∑n
i=0 ψ4i (t) , Bn (t) =

∑n
i=0 ψ5i (t) , Sh,n (t) =

∑n
i=0 ψ6i (t), Iah,n (t) =

∑n
i=0 ψ7i (t) ,

Ich,n (t) =
∑n

i=0 ψ8i (t) , and Rh,n (t) =
∑n

i=0 ψ9i (t). By implementing the norm to both sides
of Eq. (13) and utilizing the triangular inequality, it can be expressed as:

∥ψ1n (t)∥ = ∥Sn (t)− Sn−1 (t)∥ =
∥∥∥ (1−α)θ1−α

M(α)
{F1 (t, Sn−1)− F1 (t, Sn−2)}

+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1

{F1 (ϱ, Sn−1)− F1 (ϱ, Sn−2)} dϱ

∥∥∥∥∥
≤ (1−α)θ1−α

M(α) ∥F1 (t, Sn−1)− F1 (t, Sn−2)∥

+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1 ∥F1 (ϱ, Sn−1)− F1 (ϱ, Sn−2)∥ dϱ.

(22)

Due to the fact that the Lipschitz condition is provided for by kernel F1, the following can be
written:

∥ψ1n (t)∥ = ∥Sn (t)− Sn−1 (t)∥ ≤ (1−α)θ1−α

M(α)
ϖ1 ∥Sn−1 − Sn−2∥

+ αθ1−α

M(α)Γ(α)ϖ1

t∫
0
(t − ϱ)α−1 ∥Sn−1 − Sn−2∥ dϱ,

(23)

then obtained as:

∥ψ1n (t)∥ ≤ (1 − α) θ1−α

M (α)
ϖ1

∥∥∥ψ1(n−1) (t)
∥∥∥+ αθ1−α

M (α) Γ (α)
ϖ1

t∫
0

(t − ϱ)α−1
∥∥∥ψ1(n−1) (ϱ)

∥∥∥ dϱ. (24)
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Similarly, the following results are acquired

∥ψ2n (t)∥ ≤ (1−α)θ1−α

M(α)
ϖ2

∥∥∥ψ2(n−1) (t)
∥∥∥+ αθ1−α

M(α)Γ(α)ϖ2

t∫
0
(t − ϱ)α−1

∥∥∥ψ2(n−1) (ϱ)
∥∥∥ dϱ,

∥ψ3n (t)∥ ≤ (1−α)θ1−α

M(α)
ϖ3

∥∥∥ψ3(n−1) (t)
∥∥∥+ αθ1−α

M(α)Γ(α)ϖ3

t∫
0
(t − ϱ)α−1

∥∥∥ψ3(n−1) (ϱ)
∥∥∥ dϱ,

∥ψ4n (t)∥ ≤ (1−α)θ1−α

M(α)
ϖ4

∥∥∥ψ4(n−1) (t)
∥∥∥+ αθ1−α

M(α)Γ(α)ϖ4

t∫
0
(t − ϱ)α−1

∥∥∥ψ4(n−1) (ϱ)
∥∥∥ dϱ,

∥ψ5n (t)∥ ≤ (1−α)θ1−α

M(α)
ϖ5

∥∥∥ψ5(n−1) (t)
∥∥∥+ αθ1−α

M(α)Γ(α)ϖ5

t∫
0
(t − ϱ)α−1

∥∥∥ψ5(n−1) (ϱ)
∥∥∥ dϱ,

∥ψ6n (t)∥ ≤ (1−α)θ1−α

M(α)
ϖ6

∥∥∥ψ6(n−1) (t)
∥∥∥+ αθ1−α

M(α)Γ(α)ϖ6

t∫
0
(t − ϱ)α−1

∥∥∥ψ6(n−1) (ϱ)
∥∥∥ dϱ,

∥ψ7n (t)∥ ≤ (1−α)θ1−α

M(α)
ϖ7

∥∥∥ψ7(n−1) (t)
∥∥∥+ αθ1−α

M(α)Γ(α)ϖ7

t∫
0
(t − ϱ)α−1

∥∥∥ψ7(n−1) (ϱ)
∥∥∥ dϱ,

∥ψ8n (t)∥ ≤ (1−α)θ1−α

M(α)
ϖ8

∥∥∥ψ8(n−1) (t)
∥∥∥+ αθ1−α

M(α)Γ(α)ϖ8

t∫
0
(t − ϱ)α−1

∥∥∥ψ8(n−1) (ϱ)
∥∥∥ dϱ,

∥ψ9n (t)∥ ≤ (1−α)θ1−α

M(α)
ϖ9

∥∥∥ψ9(n−1) (t)
∥∥∥+ αθ1−α

M(α)Γ(α)ϖ9

t∫
0
(t − ϱ)α−1

∥∥∥ψ9(n−1) (ϱ)
∥∥∥ dϱ.

(25)

Considering the results received, the existence of the solution of model (5) is given with the help
of the following theorem.

Theorem 2 If there exists t0 satisfying the following inequality

1 − α

M (α)
ϖi +

t0

M (α) Γ (α)
ϖi < 1, for i = 1, 2, ..., 9, (26)

then the model (5) has a solution.

Proof It is established that the functions S (t) , V (t) , I (t) , E (t) , B (t) , Sh (t) , Iah (t) , Ich (t) , and
Rh (t) are bounded, and their kernels are fulfilled the Lipschitz condition. Employing the recursive
technique, the following relationship is achieved:

∥ψ1n (t)∥ ≤ ∥S (0)∥
[
(1−α)θ1−α

M(α)
ϖ1 +

tθ1−α

M(α)Γ(α)ϖ1

]n
,

∥ψ2n (t)∥ ≤ ∥V (0)∥
[
(1−α)θ1−α

M(α)
ϖ2 +

tθ1−α

M(α)Γ(α)ϖ2

]n
,

∥ψ3n (t)∥ ≤ ∥E (0)∥
[
(1−α)θ1−α

M(α)
ϖ3 +

tθ1−α

M(α)Γ(α)ϖ3

]n
,

∥ψ4n (t)∥ ≤ ∥I (0)∥
[
(1−α)θ1−α

M(α)
ϖ4 +

tθ1−α

M(α)Γ(α)ϖ4

]n
,

∥ψ5n (t)∥ ≤ ∥B (0)∥
[
(1−α)θ1−α

M(α)
ϖ5 +

tθ1−α

M(α)Γ(α)ϖ5

]n
,

∥ψ6n (t)∥ ≤ ∥Sh (0)∥
[
(1−α)θ1−α

M(α)
ϖ6 +

tθ1−α

M(α)Γ(α)ϖ6

]n
,

∥ψ7n (t)∥ ≤ ∥Iah (0)∥
[
(1−α)θ1−α

M(α)
ϖ7 +

tθ1−α

M(α)Γ(α)ϖ7

]n
,

∥ψ8n (t)∥ ≤ ∥Ich (0)∥
[
(1−α)θ1−α

M(α)
ϖ8 +

tθ1−α

M(α)Γ(α)ϖ8

]n
,

∥ψ9n (t)∥ ≤ ∥Rh (0)∥
[
(1−α)θ1−α

M(α)
ϖ9 +

tθ1−α

M(α)Γ(α)ϖ9

]n
.

(27)

Hence, the solutions exist and are provided continuously for the model (5). For the sake of clarity,
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to exhibit that the functions S (t) , V (t) , I (t) , E (t) , B (t) , Sh (t) , Iah (t) , Ich (t) , and Rh (t) have a
solution to model (5), suppose that

S (t)− S (0) = Sn (t)− Φ1n (t) ,
V (t)− V (0) = Vn (t)− Φ2n (t) ,
E (t)− E (0) = En (t)− Φ3n (t) ,
I (t)− I (0) = In (t)− Φ4n (t) ,
B (t)− B (0) = Bn (t)− Φ5n (t)
Sh (t)− Sh (0) = Sh,n (t)− Φ6n (t) ,
Iah (t)− Iah (0) = Iah,n (t)− Φ7n (t) ,
Ich (t)− Ich (0) = Ich,n (t)− Φ8n (t) ,
Rh (t)− Rh (0) = Rh,n (t)− Φ9n (t) .

(28)

Accordingly, the expression ∥Φ1n (t)∥ is acquired as:

∥Φ1n (t)∥ =
∥∥∥ (1−α)θ1−α

M(α)
{F1 (t, S)− F1 (t, Sn−1)}

+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1

{F1 (ϱ, S)− F1 (ϱ, Sn−1)} dϱ

∥∥∥∥∥
≤ (1−α)θ1−α

M(α) ∥F1 (t, S)− F1 (t, Sn−1)∥

+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1 ∥F1 (ϱ, S)− F1 (ϱ, Sn−1)∥ dϱ

≤ (1−α)θ1−α

M(α)
ϖ1 ∥S − Sn−1∥+ tθ1−α

M(α)Γ(α)ϖ1 ∥S − Sn−1∥ .

(29)

After using this process recursively, then yields at t0

∥Φ1n (t)∥ ≤
[
(1 − α) θ1−α

M (α)
+

t0θ1−α

M (α) Γ (α)

]n+1

ϖn+1
1 P1. (30)

As n approaches infinity, taking the limit to both sides of Eq. (30), it is obtained as ∥Φ1n (t)∥ → 0.
Consequently, the existence of the solution of the model (5) is verified. Similarly, it is found
∥Φ2n (t)∥ → 0, ∥Φ3n (t)∥ → 0, ∥Φ4n (t)∥ → 0, ∥Φ5n (t)∥ → 0, ∥Φ6n (t)∥ → 0, ∥Φ7n (t)∥ → 0,
∥Φ8n (t)∥ → 0, and ∥Φ9n (t)∥ → 0. Now, the uniqueness of the solution is given by the following
theorem.

Theorem 3 The model (5) has a unique solution, provided that

(1 − α) θ1−α

M (α)
ϖi +

t0θ1−α

M (α) Γ (α)
ϖi < 1, for i = 1, 2, ..., 9.

Proof Assumed that S1 (t), V1 (t), E1 (t), I1 (t), B1 (t) , Sh1 (t) , Iah1 (t) , Ich1 (t) , and Rh1 (t) are also
solutions of the model (5). Then,

S (t)− S1 (t) =
(1−α)θ1−α

M(α)
{F1 (t, S)− F1 (t, S1)}

+ αθ1−α

M(α)Γ(α)

t∫
a
(t − ϱ)α−1

{F1 (ϱ, S)− F1 (ϱ, S1)} dϱ.
(31)

Considering that the kernel fulfills the Lipschitz condition, implementing the norm to both sides
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of Eq. (31), it reaches the inequality presented below:

∥S (t)− S1 (t)∥ ≤ (1 − α) θ1−α

M (α)
ϖ1 ∥S (t)− S1 (t)∥+

tθ1−α

M (α) Γ (α)
ϖ1 ∥S (t)− S1 (t)∥ . (32)

It gives

∥S (t)− S1 (t)∥
(

1 −
(1 − α) θ1−α

M (α)
ϖ1 −

tθ1−α

M (α) Γ (α)
ϖ1

)
≤ 0. (33)

As
(

1 −
(1−α)θ1−α

M(α)
ϖ1 −

tθ1−α

M(α)Γ(α)ϖ1

)
> 0, then ∥S (t)− S1 (t)∥ = 0. As a result, it is attained

S (t) = S1 (t). Similarly, it is seen that V (t) = V1 (t), E (t) = E1 (t), I (t) = I1 (t), B (t) = B1 (t),
Sh (t) = Sh1 (t), Iah (t) = Iah1 (t), Ich (t) = Ich1 (t) , and Rh (t) = Rh1 (t) . Thus, it is concluded that
model (5) has a unique solution.

4 Numerical solutions and discussion

In this section, numerical solutions of the improved fractional brucellosis model are obtained using
the parameter values in Table 1 for t = 12 years. The initial conditions are S(0) = 4.341 × 107,
V(0) = 8.44 × 106, E(0) = 0, I(0) = 1.33 × 106, B(0) = 6 × 106, Sh(0) = 2.384 × 107, Iah(0) =
8663, Ich(0) = 0, and Rh(0) = 0 [42]. The Adams-type predictor-corrector method is applied to
solve the fractional-order brucellosis model [46]. All numerical results are given by means of
MATLAB.

Table 1. Interpretation of parameters in model (5)

Parameter Value & Units & References
Λs 11629200 (sheep year−1), [42]
β 1.48×10−8 (sheep−1year−1), [42]
ϕ 1.7×10−10 (bacteria−1 year−1), [42]
ρ 107 (bacteria), Assumed
µ 0.22 (year−1), [42]
ν 0.316 (year−1), [42]
δ 0.4 (year−1), [42]
ε 0.18 (year−1), [42]
σ 1 (year−1), [42]
c 0.15 (year−1), [42]
k 15 (bacteria sheep−1 year−1), [42]
d 3.6 (year−1), [42]
n 0 (year−1), [42]
τ 0 (year−1), [42]
Λh 0.0057 (human year−1), [47]
βh 1.58×10−10 (sheep−1year−1), [42]
ϕh 1×10−11 (bacteria−1year−1), [42]
µh 0.0054 (year−1), [47]
σh p 0.6 (year−1), [42]
σh(1 − p) 0.4 (year−1), [42]
γch 0.5 (year−1), [48]

Figure 2 compares the developed fractional brucellosis model with the integer model over a 12-
year period. The fractional brucellosis model demonstrates a slight reduction in the transmission
of bacteria to sheep and humans with a saturated incidence rate. This reduction is observed due
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Figure 2. The comparison of the integer-order model with the developed fractional derivative model

to various factors, including the human birth and death rates and the existence of a recovered
compartment. The inclusion of a recovered compartment of humans into the model resulted
in a reduction in the number of susceptible individuals. In the integer order brucellosis model,
chronically infected humans become susceptible upon recovery. In contrast, in the developed
fractional brucellosis model, the behavior of susceptible and recovered humans in the process can
be clearly examined with the addition of the recovered compartment of humans. This allows for
the review of the transmission process with greater specificity. Moreover, a reduction in the rate of
transmission is observed due to the continued shedding of Brucella bacteria from exposed and
infected sheep throughout the process. Figure 3, the developed fractional brucellosis model is
compared in different orders and this change is reflected in the graphical results as flexibility. In
other words, the behavior appears to fade as the order of derivatives decreases. Nevertheless, it is
evident from the graphs that an interspecies brucellosis epidemic has initiated. Consequently, it is
imperative to implement various control strategies to eliminate the infection.

5 Conclusions

Brucellosis is an interspecies infectious disease that influences people and animal health, as well
as financial growth in affected areas. Hence, figuring out the transmission dynamic of brucellosis
has become crucial. For this purpose, a fractional-order model for interspecies transmission of
brucellosis was developed. First, the current brucellosis transmission model with integer order
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Figure 3. The comparison of the developed fractional derivative model with different fractional orders

was incorporated with the ABC fractional derivative to examine the transmission by its behavior.
Then, to observe more specifically, the model was discussed with the recovered compartment,
recruitment, and natural mortality rate for humans. Also, the saturated incidence rate was
proposed for brucellosis as indirectly transmitted to individuals from the environment. The fixed-
point theory was used to reveal the existence and uniqueness of solutions to the developed model.
The model has been numerically solved using Adams-type predictor-corrector method with help
of the MATLAB. Graphically, the effect of fractional derivatives of different orders on the model
behavior was examined. It was observed that the interspecies brucellosis epidemic increased in
the process. For this reason, an analysis of the dynamics and sensitivity of the developed fractional
brucellosis model is planned for future work. Thus, we hope that the factors that cause brucellosis
transmission, which adversely affects the community, could be determined.
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