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Abstract
Calcium signal transduction is essential for cellular activities such as gene transcription, death, and
neuronal plasticity. Dynamical changes in the concentration of calcium have a profound effect on the
intracellular activity of neurons. The Caputo fractional reaction-diffusion equation is a useful tool for
modeling the intricate biological process involved in calcium concentration regulation. We include the
Amyloid Beta, STIM-Orai mechanism, voltage-dependent calcium entry, inositol triphosphate receptor
(IPR), endoplasmic reticulum (ER) flux, SERCA pump, and plasma membrane flux in our mathematical
model. We use Green’s function and Hankel and Laplace integral transforms to solve the membrane
flux problem. Our simulations investigate the effects of various factors on the spatiotemporal behavior
of calcium levels, with a simulation on the buffers in Alzheimer’s disease-affected neurons. We also
look at the effects of calcium-binding substances like the S100B protein and BAPTA and EGTA. Our
results demonstrate how important the S100B protein Amyloid beta and the STIM-Orai mechanism
are, and how important they are to consider when simulating the calcium signaling system. As such,
our research indicates that a more realistic and complete model for modeling calcium dynamics may
be obtained by using a generalized reaction-diffusion technique.

Keywords: Fractional-order derivative; calcium ions; neuron; Alzheimer’s disease

AMS 2020 Classification: 35R11; 35A22; 35K57; 92C20

1 Introduction

Calcium ions Ca2+ serving as ubiquitous second messengers, play a crucial role in various
cellular processes. These include cellular differentiation, excitability, apoptosis, gene transcription,
and synaptic plasticity, all integral to maintaining cellular function and system regulation [1].
To regulate these diverse functions, cells employ multiple mechanisms to control intracellular
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calcium levels. These mechanisms include the passive entry of calcium from the extracellular
space through various voltage-gated and membrane ER pathways and diffusion within the
cell, followed by sequestration by intracellular entities [2, 3]. Calcium enters the cell through
voltage-operated calcium channels and certain exchangers. This diffusion triggers the immediate
activation of physiological processes. A significant amount of calcium is buffered immediately,
while the remainder undergoes further processing. The spatial and temporal dynamics of calcium
inside neurons are essential for healthy cellular function, which can be analyzed by mathematical
modeling.
The endoplasmic reticulum (ER) serves as a major internal calcium reservoir, playing a pivotal role
in intracellular calcium signaling. The ER releases calcium, contributing to calcium waves that
facilitate signaling cascades. Other factors, such as Plasma membrane calcium ATPase (PMCA),
Orai channel, and mitochondria, are also actively involved in maintaining cytoplasmic calcium
concentration.
Calcium diffuses within the cell through various pathways in cytosolic fluid and different or-
ganelles. This calcium homeostasis depending on various factors creates anomalous behavior of
the previous concentration profile. To address this complexity, Caputo’s differential framework
is applied to the nonlocal nature of the reaction-diffusion model. Non-integer differential equa-
tion considered the previous memory to compute the current step, which gives a better realistic
approach.
The calcium hypothesis has been studied and mathematically modeled over the past few decades.
Smith et al. have analyzed the asymptotic behavior of calcium signaling using a steady-state
analytical solution approach [4]. Dupont et al. have modeled calcium-induced calcium release of
intracellular pools and verified their results with experimental data [5]. Dupont et al. developed a
simplified model of the calcium kinase and its transductions [6]. Smith et al. examined several
aspects of calcium kinetics, including oscillation patterns, buffer interactions, and receptor involve-
ment [7]. Schmeitz et al. have investigated the time and space features of calcium signaling in T
cells in a variety of experimental data systems [8]. The work of Friedhoff et al. was an analysis of
the nature of calcium oscillations by means of stochastic methods [9]. The comprehensive study
of bifurcation analysis of calcium oscillations was the focus of the work of Marko et al. [10]. In
addition, Dave and Jha extended the studies by applying the models to Alzheimer’s dementia
and have shown aberrant calcium levels in nerve cells [11]. Manhas et al. have developed models
for the evaluation of calcium bifurcation studies in acinar cells [12]. Naik and Pardasani worked
out the finite element approach to calcium diffusion along with ER and the plasma membrane for
the oocyte [13]. Jha et al. investigated the fractional calcium reaction-diffusion in nerve cells [14].
Joshi and Yavuz explored the bifurcation of calcium transients in hepatocyte cells [15]. Vora et al.
developed one- and two-dimensional fractional calcium dynamics with Orai flow in neuronal cells
[16, 17]. Joshi and Jha studied the mechanism of chaotic calcium behavior using the Hilfer operator
on neuronal cells [18]. Vaishali and Adlakha studied the ATP-insulin-IP3 regulating calcium home-
ostasis in pancreatic cells [19]. Luchko and Yamamoto developed the time-fractional diffusion
wave model, which was solved using an analytical approach [20]. Pawar and Pardasani developed
models to elucidate the dynamics of calcium, inositol triphosphate (IP3), and amyloid-beta sys-
tems and shed light on cellular degeneration [21]. Lai et al. studied the regulation of calcium and
buffer by calcium channels in cardiac myocytes [22]. Luchko et al. established the uniqueness and
existence of the initial value and boundary fractional differential problem, which helps to derive
the maximum principle [23]. Agarwal et al. studied the advection-diffusion process of calcium by
using the Caputo-Fabrizio operator [24]. Tewari et al. have developed a computational model for
the homeostasis of calcium and mitochondria [25]. Jagtap and Adlakha studied the dynamics of
IP3R and calcium in the hepatocyte [26]. Singh et al. studied the calcium signaling in the alpha
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cells using a numerical approach [27]. Hardagna et al. studied the calcium diffusion in nerve
cells in polar dimensions using fractional dynamics [28]. Jha et al. studied the fractional order
investigation of the neuronal polar diffusion equation [29]. Joshi studied the COVID-19 dynamics
with neuro-degeneration using memory impact [30]. Purohit et al. studied the fractional dynamics
with the multi-order approach in physics [31]. Vaishali and Adlakha studied the system of calcium
homeostasis in beta cells [32]. Naik et al. studied the flip bifurcation analysis of the chemical
model in discrete time [33]. Manhas studied the IP3 and calcium oscillations for mitochondria
in non-excitable cells [34]. Kumar and Erturk studied the cholera disease by using the fractional
differential numerical method [35]. Nakul et al. studied the calcium diffusion in cholangiocyte
cells using the finite volume approach [36].
As of now, there is a dearth of comprehensive research exploring the collective impacts of the
Membrane and the endoplasmic reticulum (ER) through mathematical modeling. This study seeks
to bridge this gap by analyzing the combined effects of these parameters on calcium oscillations in
neuronal cells.

2 Essential mathematical definitions

Definition 1 Let a function f ∈ C((0, T)× (0, R)) is continuous and differentiable in space and time
where (r, t) ∈ (0, R), (0, T) [37–40].

Definition 2 Let n > 0, n ∈ R+ and Riemann–Liouville fractional integration defined by [37]

Jα f (t) =
1

Γ(α)

∫ t

0
(t − ξ)(α−1) f (ξ) dξ, α > 0, α ∈ R. (1)

Definition 3 Caputo fractional integration and differentiation is defined by [37],

c
0Dα

t f (t) = Jm−αDm f (t), (2)

c
0Dα

t f (t) =
1

Γ(m − α)

∫ t

0
(t − ξ)(m−α−1) f (ξ)m dξ, α > 0, α ∈ R + . (3)

Definition 4 The Mittag-Leffler function is defined by a non-negative variable parameter α, a real number
parameter β, and a complex plane variable p [37, 41],

Eα(p) =
∞∑

k=0

pk

Γ(αk + 1)
, (4)

Eα,β(p) =
∞∑

k=0

pk

Γ(αk + β)
, (5)

and transforming by Laplace definition [41],

L{Eα,β(ztα)} =
sα−1

sα ∓ z
, (6)

L{tγ−1Eµ,γ(±ptµ)} =
sµ−γ

sµ ∓ p
, Real(s) >| p |1/µ, p ∈ C, (7)

L{c0Dα
t f (t)} = sαF(s)−

n−1∑
k=0

sα−k−1 f k(0), n − 1 < α ≤ n. (8)
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Definition 5 Wright’s function, which is defined by [37],

ϕ(α, µ, p) =
∞∑

k=0

pk

Γ(αk + µ)k!
, µ > −1, µ ∈ C, (9)

and its Laplace transform is [41]

L{ϕ(α, µ,−ptµ)} = s−1esµ p. (10)

Definition 6 Mainardi's function [41] is given by,

Mα(p) =
∞∑

k=0

−pk

Γ(−αk + (1 − α))k!
, 0 < α < 1. (11)

Mainardi's function Laplace transform is

L
{

t−α Mα

( p
tα

)}
= sα−1e−sα p. (12)

3 Modeling and biological background

A fractional model has been created to examine the influence of the Amyloid beta, STIM-Orai
channel in conjunction with important factors such as buffer concentration, VGCC, IP3 receptors,
and ER fluxes. Subsequently, these components’ responsibilities are examined to learn how they
affect neuronal processes and diseases like Alzheimer’s disease.

Impact of protein

Calcium ions interact and combine with protein resulting in calcium-bound buffers, which is a nec-
essary step in modeling the spatiotemporal behavior of calcium ions. Entry of neurotransmitters
between nerve cells depends on this calcium buffer reaction. Errors in this buffering mechanism
have the potential to cause cell death and play a role in the emergence of neurodegenerative
illnesses like Parkinson’s and Alzheimer’s disease.
The buffer complex is described using a chemical reaction equation. The mathematical equation
for the buffer complex and cytosolic calcium ions is as follows [42],

[Ca2+] + [P]
k+
⇌
k−

[CaP]. (13)

[Ca2+] represents calcium-free ions, whereas [P] is a protein that binds to calcium ions and creates
a calcium-bound protein molecule bound via the k+ rate. This both-way process dissociates the
bound from calcium molecules and the protein at a disassociation rate of k−.

Impact of amyloid beta

The distortion of amyloid precursor protein (APP) results in the production of amyloid beta 42
(Aβ42), which perforates the plasma membrane. Amyloid beta plaques and tangles build up as a
result, inhibiting surrounding plasma membrane processes. Aβ42 opens up a new channel for
calcium ions, causing the concentration of calcium to rise quickly to unmanageable levels without
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a sustained influx. For weak neurons, the accumulating calcium is harmful [43]. Then we have

JAm = VAm
1

1 + e(V−q1)/q2
, (14)

where VAm is the rate of calcium ions entering through this pathway. q1 and q2 are voltage
dependence of calcium ions and values are -30,23 mV.

Impact of STIM-Orai

The development of memory carrier spines in neurons is mediated by the STIM-Orai pathway.
The calcium ions that stream from the nanodomain of the Orai channel are made easier by STIM
insights, which control calcium activity through ER calcium concentration. Calcium ions help
mature mushroom spines maintain their steady shape. Any disruption of channel clusters or
erratic flow might lead to cognitive impairments [44, 45],

JOrai = ϕ
IOrai

AOzF
. (15)

In this context, ϕ represents the probability of channel opening, IOrai denotes the current flowing
through the Orai channel.

Impact of IP3R

The main intracellular calcium storage is located in the ER. IP3 receptors (IP3R) have the ability
to release calcium, which is controlled by the biphasic connection between calcium and inositol
1,4,5-trisphosphate (IP3). Intracellular calcium oscillations are induced by IP3R flow and are
necessary for processes such as synaptic modulation, learning, and neurite development. The
intraorganellar network’s calcium homeostasis can be both elevated and disrupted by mutations
[11],

JIP3R = (CER − C)KIP3ROIP3R. (16)

CER is the calcium level in ER, C is cytosolic calcium, and OIP3R is the opening rate of the IPR,
which varies from zero to one.

Impact of SERCA

The Sarcoendoplasmic Reticulum Calcium ATPase (SERCA) pump is a component of the ER
calcium store replenishment system that attenuates cytoplasmic calcium signal hyperactivity.
Calcium sequestration systems may be severely overloaded by a modified SERCA pump [46],

JSERCA = VSERCA
C2

C2 + K2
SERCA

1
CER

. (17)

VSERCA is pump value, KSERCA is the dissociation factor of pump.

Impact of channel and leak flux

Calcium moves passively from the endoplasm into the cytoplasm via channels and leaks made of
different kinds of pores and proteins. Calcium homeostasis can be upset and the ER overloaded
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by poor calcium control. The mathematical formulation of leak and channel flow is as follows [46],

Jleak =
Dleak
C1

(1 + C1)

(
C0

1 + C1
− C

)
, (18)

JCh =
DChan

C1
(1 + C1)

(
C0

1 + C1
− C

)
, (19)

where Dleak is leak constant, DChan is channel conductance.

Impact of PMCA flux

Via the high-energy, high-affinity PMCA pump, which the tau protein may block, the plasma
membrane actively mediates calcium and dysregulates cytoplasmic calcium. This disturbance is
quantitatively represented by the mathematical expression of PMCA flux [46],

JPMCA = VPMCA
C2

C2 + K2
PMCA

. (20)

Impact of voltage-dependent calcium channel

Calcium ion channels that are gated by voltage are present in neurons and other excitable cells.
These ion channels allow the movement of ions, such as sodium, chloride, and calcium, into
and out of the cells. VDCC plays a crucial role in the influx of calcium into cells, which then
triggers various intracellular physiological processes [47, 48]. VDCCs are categorized into these
subtypes L, P/Q, N, and T subtypes. L-type calcium channels are of particular importance in brain
cells, initiating calcium-based activities and subsequent intracellular processes. This equation is
expressed as follows [46, 49],

IVDCC = PVz2 F2Vm

RT
C − Caoexp(−z FVm

RT )

1 − exp(−z FVm
RT )

, (21)

calcium flux is given by,

σCa =
−ICa

VneuronszF
. (22)

Table 1 shows all of the values for these parameters.

Modified model in Caputo sense

By combining channels, leaks, pumps, and buffer reactions, one may represent simplified neuronal
calcium homeostasis by converting the time derivative into a Caputo fractional derivative. The
following is how the suggested model is put forth:

∂uC
∂tu = D

(
∂2C
∂r2 +

1
r

∂C
∂r

)
− k+[P][Ca2+] + k−[CaP] + JIPR − JSERCA + Jleak + JCh. (23)

The other formulations, as is customary, represent the order of the Caputo derivative, u, which
has a lower limit equal to zero and an upper limit equal to t.
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The initial condition and boundary condition for the derivation of the above formula are as follows

C(r, 0) = g(r), C(∞, t) = 0. (24)

As follows, the Neumann condition refers to the natural state of calcium diffusion in nerve cells

∂[C]
∂n

= JAm + JOrai − JPMCA + JVDCC. (25)

To handle simple multiplication of the nonlinearity in JSERCA. Linearizing the equation by taking
two different possible aspects [50]:
Case 1: For C ≪ KSERCA. Then

C2

C2 + K2
SERCA

≪ C2

K2
SERCA

≪ C
KSERCA

. (26)

Case 2: For KSERCA ≪ C. Let K = βc, for 0 < β < 1,

C2

C2 + K2
SERCA

=
1

1 + β2 . (27)

Nondimensionalization for the term of the proposed model is as follows:

r∗ = r/l, t∗ = t/T, C∗ = C/K, C∗∞ = C∞/K, P∗∞ = P∞/[P]T.

To decrease the complexities of the following model, which is the proposed mathematical form,
and let

a = k+[P]− KIPROIPR +
KSERCA
VSERCA

−
1 + C1

C1
(Dleak + DChan),

b = k+[P]C∞ + CER(KIPROIPR) + k+[P]C∞ + (Dleak + DChan)[C0/C1],

C
0 Du

t C = DCa∇2C − aiC + bi, (28)

where i = 1, 2 for Case 1 and Case 2, respectively.

4 Main results

In this section, the solution of the calcium diffusion fractional dynamics is solved by using the
hybrid transform method.

Theorem 1 For variables of the range, 0 ≤ t <∞, 0 ≤ r <∞, u = (0, 1], have the form as Eq. (28) and
basic condition as Eq. (24), Neuronal calcium flow comes from various channels and receptors which are
considered a non-homogeneous condition, (25), can be derived as the form,

G(r, t) =
√

2√
π

∫∞
0

Eu[(Dk2 − ai)tu]J0(kr)kdk +
√

2√
π
(bi + jo)tu

∫∞
0

Eu,u+1[(Dk2 − ai)tu]J0(kr)kdk.

(29)
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Proof Using Eq. (28) as our foundational model.
Taking two cases for the SERCA pump, v. The Hankel transform is applied over the radius.

C
0 Du

t Ċ = Dk2Ċ − aiĊ + (bi + j0)δ(k), (30)

using the Laplace transform to apply temporal transformation

C̈(k, s) =
su−1 ˙g(k)

(su − Dk2 + ai)
+

bi + joδ(k)
s(su − Dk2 + ai)

δ(k), (31)

where k is the Hankel transform variable.
The Laplace transform is now used by the formulas below in the solution

Eu(ptu)← L→ su−1

su − p
,

tγ−1Eu,γ(ptu)← L→ sµ−1

sµ ∓ p
,

(32)

˙C(k, t) = Eu[(Dk2 − ai)tu] ˙g(k) + (bi + jo)tuEu,u+1[(Dk2 − ai)tu]δ(k). (33)

With the inverting transform, we obtain:

C(r, t) =

√
2√
π

∫∞
0

Eu[(Dk2 − ai)tu] ˙g(k)J0(kr)kdk

+
(bi + jo)tu

√
2√

π

∫∞
0

Eu,u+1[(Dk2 − ai)tu]δ(k)J0(kr)kdk, (34)

C(r, t) =

√
2√
π

∫∞
0

Eu[(Dk2 − ai)tu]J0(kr)k
∫∞

0
g(y)J0(kr)kdy ∗ dk

+
(bi + jo)tu

√
2√

π

∫∞
0

Eu,u+1[(Dk2 − ai)tu]

∫∞
0

δ(y)J0(kr)kdy ∗ dk, (35)

C(r, t) =

∫∞
0

G1(r − y, t)g(y)dy +

∫∞
0

G2(r − y, t)δ(y)dy. (36)

G1
u(r, t) =

√
2√
π

∫∞
0

Eu[(Dk2 − ai)tu]J0(kr)kdk, (37)

G2
u(r, t) = (bi + jo)tu

∫∞
0

Eu,u+1[(Dk2 − ai)tu]J0(kr)kdk, (38)

Gu(r, t) =

√
2√
π

∫∞
0

Eu[(Dk2 − ai)tu]J0(kr)kdk (39)

+

√
2√
π
(bi + jo)tu

∫∞
0

Eu,u+1[(Dk2 − ai)tu]J0(kr)kdk.

Hence proved.

Lemma 1 [38–40] An example of a function with an exponential combination is the Mittag-Leffler function
family. When Z ∈ C, a complex field, has any value, E(µ,γ)(x) converges. Eq. (40) is a Green’s function
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solution derived by a semi-analytical method for calcium diffusion in neuron cells. This analytical method,
however, needs to be revised to provide closed-form answers.

5 Analysis

The essential solution was obtained by using Green’s function to describe the outcome of the
integral transform. Below is the further analysis that was performed to get a closed-form answer.

Theorem 2 Taking 0 < u ≤ 1, 0 < r < ∞, 0 ≤ t < ∞, the mathematical form is (40) from this
closed-form solution obtained as,

G(r, t) =
1

2D
√

tu

∫∞
0

e
−r2
4tuk−aiktu

k−
1
2 Mu(k)dk +

(bi + jo)tu/2

2D

∫∞
0

e
−r2
4tuk−aiktu

k−
1
2 ϕ(−u, 1; k)dk. (40)

Proof Implementing the Hankel transform to a radial variable and using Eq. (40), we obtain,

Gu(r, t) = Eu[(Dk2 − ai)tu] + (bi + jo)tuEu,u+1[(Dk2 − ai)tu]. (41)

Now using the Laplace to transform the temporal domain, we obtain,

¨Gu,2(k, s) =
su−1

(su + Dk2 + ai)
+

s−1(bi + jo)
(su + Dk2 + ai)

, (42)

¨Gu,2(k, s) = su−1
∫∞

0
e−p(su+Dk2+ai)dp + (bi + jo)s−1

∫∞
0

e−p(su+Dk2+ai)dp. (43)

Applying the inverse Laplace now, and utilizing the definitions,

¨Gu,2(k, s) =
∫∞

0
e−p(Dk2+ai)t−u Mu

( p
tu

)
dp + (bi + jo)

∫∞
0

e−p(Dk2+ai)ϕ(−u, 1; −ptu)dp. (44)

Using the inverse Hankel transform, we get

G(r, t) =
1

2D
√

tu

∫∞
0

e
−r2
4tuk−aiktu

k−
1
2 Mu(k)dk +

(bi + jo)tu/2

2D

∫∞
0

e
−r2
4tuk−aiktu

k−
1
2 ϕ(−u, 1; k)dk. (45)

Hence the result.

Existence and uniqueness

Remark 1 [38, 39] The closed-form solution is gained by using Green’s function.
Let α, m > 0, then for p, continuous function defined below

E(m,α)(p) =
∞∑

k=0

pk/(m(µk + µ)), (46)

is the convergent and let constant Mi > 0 as,

| E(m,µ)(z) |≤ Mi. (47)

If α ≥ 0 and ξ ∈ C, thus additions of the above series uniformly converge throughout an entire complex
plane [39, 40].
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For the uniqueness of the solution, let us take c(r, t) = h(r, t)− ḣ(r, t). If a distinguished result exists
of this nature with this physiological constraint then c(r, t) ≡ 0 → h(ri, ti) ≡ ḣ(ri, ti) which shows the
uniqueness of the solution.

Theorem 3 c ∈ C[[0, T]× [0, R]] and states the Eq. (28), equality can be given as below,

maxΩc = maxΓc, (48)

where Γ is the boundary and Ω is the domain.

Proof This statement will be proven by contradiction.
Let us take into consideration

M = maxΩc, (49)

M̈ = maxΓc, (50)

concerning this M̈ ≤ M. Then M carries any arbitrary point (rM, tM).
Using a function that can be expressed as w : Ω → R fulfills our assumption as well, having
equivalent physiological values.
Now, we may proceed as follows

C
0 Du

t w − D∇2w + aiw − bi = 0, (51)

considering the function as it is described here

w = c + (M − M̈)t(−m). (52)

In maximal attainment at a level of c. (rM, tM) above equation implies

w = M̈ + (M − M̈)ϵ, w < M. (53)

Also, w ≥ c in Ω and at maximum point

w = c(rM, tM) + M − M̈. (54)

For the left-side equation

C
0 Du

t w − D
∂2w
∂r2 +

1
r

∂w
∂r

+ aiw − bi +
M − M̈Γ(1 − m)

Γ(1 − m − u)
t−m−u ≤ M − M̈Γ(1 − n)

Γ(1 − m − u)
t−m−u > 0. (55)

From above equation

C
0 Du

t c − D∇2c + aic − bi > 0. (56)

The positive output contradicts this

maxΩc = maxΓc. (57)

Hence proved.
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Applicability of the model

A multitude of cerebral processes, including neurotransmitter release, synaptic plasticity, and gene
transcription, are contingent upon calcium ions. To achieve physiological equivalence with in
vivo neuronal calcium dynamics, the calcium amounts in our model were adjusted. This method
ensures that the model accurately mimics the behavior of neuronal calcium.
A variety of brain processes, including neurotransmitter release, synaptic plasticity, and gene
transcription, are critically dependent upon calcium ions. In order to achieve physiological
equivalence with in vivo neuronal calcium dynamics, the calcium amounts in the model were
adjusted. This ensures that the model accurately mimics the behavior of neuronal calcium [14, 18].

6 Results and interpretation

The results demonstrate the distribution of calcium within a neuron in terms of spatial and
temporal dimensions. Table 1 provides the numerical values and accompanying descriptions of
the input parameters utilized in the generation of these results.
In Figure 1, shows the calcium pattern for a 100µM buffer. This graphic depicts the creation of a
calcium spike that is uniformly distributed in terms of temporal order transition for the cytosol.
This hysteresis memory emphasizes the nonlocal character of neuronal calcium transport at a scale
of 0.7µM. Calcium ions diffuse across the cytosolic buffer, binding to the ER storage receptors and
profoundly altering protein activity. Calcium ion concentration falls linearly as the radial distance
from the plasma membrane increases. Buffer is very important in calcium homeostasis. We can
observe the temporal impact on the calcium ions with differential order. Here EGTA buffer is
taken for normal neuronal cells which are bound with the calcium ions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
a

lc
iu

m
 c

o
n

c
e

n
tr

a
ti
o

n
 (

M
)

u=1

u=0.9

u=0.8

u=0.7

Figure 1. The time diffusion of calcium ions, as simulated by successive orders of the time derivative, when the
buffer is 100 µM

In Figure 2, shows the radial distribution of calcium concentration at a buffer value of 100 µM
with a fractional order u = 1, 0.9, 0.8, 0.7. This illustration depicts the creation of a calcium spike
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Figure 2. The radial distribution of calcium ions, as simulated by successive orders of the time derivative, when
the buffer is 100 µM
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Figure 3. Radial distribution of free calcium ions for a diffusion coefficient 150 and 250 with temporal order
u = 1

dispersed radially in the cytosolic free calcium concentration. At u = 0.9, the hysteresis memory
has a lower nonlocal character than u = 1.0. The lower fractional order u = 0.9 results in a
reduction in cytosolic free calcium ions, creating a subdiffusion impact on the spatial pattern. This
order includes all prior states up to 0.9 of the reaction-diffusion process, recording the transition
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Figure 4. Temporal pattern of free calcium ions for a diffusion coefficient 150 and 250 with temporal order u = 1

of the differential order of calcium ions.

In Figure 3, displays calcium concentration variations with a diffusion coefficient of D = 150 for
this reaction-diffusion process with radial distance. D = 250 shows that calcium concentration
increases with a reduced diffusion coefficient, signifying localized calcium signaling locations and
probable calcium overload.
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Figure 5. Radial diffusion of calcium ions with [B] = 200µM for a different order of time derivative
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Figure 6. Temporal pattern in Alzheimer’s impact of reduced protein [B] = 50µM on calcium ions for a different
order
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Figure 7. Radial distribution in Alzheimer’s impact of reduced protein [B] = 50µM on calcium ions for a
different order

Figure 4 displays calcium concentration variations with a diffusion coefficient of D = 150 for
this fractional temporal reaction-diffusion process. D = 250 shows that calcium concentration
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Figure 8. Radial distribution of free calcium ions for various protein impact

increases with a reduced diffusion coefficient, signifying intersection indicates the background
calcium level decreased.
In Figure 5, we show calcium concentration with increasing buffer concentration [B] = 200µM
along the radius. The figure shows that the calcium spectrum is controlled, with enhanced calcium
binding activity, showing that increasing buffer concentrations effectively regulate calcium levels.
In Figure 6, we illustrate the effect of the reduced buffer presence observed in Alzheimer’s im-
pacted neurons. This can increase the amount of calcium ions, degenerating neuronal homeostasis
and leading to neuronal death. The temporal pattern is higher than the normal neuronal cell.
In Figure 7, it illustrates the effect of the reduced buffer presence observed in the radial distance
with different temporal order. It can be observed that calcium spread and peak levels are higher
and prolonged than normal neuronal conditions. Long-term calcium behavior is harmful to
neurons, which leads to cell death.
In Figure 8, it illustrates the nature of the endogenous buffer calmodulin, S100B can control the
calcium spectrum in a well-controlled manner. The presence of the BAPTA buffer in the cytosol
could disperse calcium in a narrow spectrum. This effect can be useful for well-controlled calcium
dispersion in the Alzheimer’s impacted neuron.

Table 1. Values of physiological constants [4, 9, 43]

Symbols Description Value Unit
DCa Diffusion constant value 150-250 µM2/s
C1 Cell ratio 0.185 -
k+ Association constant rate (EGTA, S100B, BAPTA) 1.5,1.1,600 µM−1s−1

[Ca2+]∞ Background concentration level 0.1 µM
VSERCA Pump conductance 120 s−1(µM)−2

Dleak Leak flux constant 0.11 s−1

DChan Channel flux constant 6 s−1
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[P] Protein level 50-100 µM
ϕ Opening rate 0.9 -
IO Current of Orai 2.1 fA
AO Area of Orai 0.25 nm2

z Valency of calcium ions 2 -
C0 extracellular calcium concentration 2 µM

Vneuron Volume of cellular cytosol 523.6 µm3

Vm membrane potential -0.07 V
R Ideal gas constant 8.31 J/(mol.K)
T Absolute temperature 300 K

PV Permeability of ion 0.5 s−1

KSERCA Dissociation SERCA rate 0.18 µM
KPMCA PMCA pump rate 0.425 µM

CER ER calcium level 500 µM
VPMCA PMCA conductance 28 s−1(µM)−2

KIP3R IPR rate 0.52 s−1

7 Conclusion

In this work, we have simulated the interaction of calcium ions and buffers with temporal fractional
order, taking into account a variety of characteristics including neuronal membrane flux and ER
flux. Different endogenous and exogenous proteins have been investigated in the context of
Alzheimer’s disease. The Hankel transform has been used for the polar derivative and the Laplace
transform for initial conditions, resulting in Mittag-Leffler functions. Green’s functions have
been used to obtain closed-form solutions, which have also included Mainardi’s and Wright’s
functions. A modified calcium diffusion model, formulated within the Caputo framework, has
been successfully solved through a hybrid transform method. The existence and uniqueness of
the solution have been demonstrated for fundamental model analysis.

• We have obtained graphical results of the interaction of calcium and other factors with different
temporal order, reduced temporal memory reduced the calcium level in neurons.

• The study shows that the time fractional order has a converging effect on calcium levels for
radial distance, driven by many characteristics.

• The diffusion coefficient parameter has an inverse influence on calcium distribution, causing
calcium concentrations to accumulate near the membrane.

• The impact of Alzheimer’s disease is demonstrated by a reduced buffer quantity, resulting
in prolonged elevated calcium levels in neurons, which are hazardous. Prolonged conditions
could lead to cell death with lower buffer impact.

• Neuroprotection relies heavily on BAPTA binding concentration. Mobile and immobile buffers
have distinct effects on calcium levels, with EGTA, Calmodulin, and S100B considerably lower-
ing calcium concentrations.

Thus, our findings provide light on the fractional dynamics of calcium signaling and buffering
in neurons, offering insights into protein simulation possibilities for neurodegenerative illnesses
such as Alzheimer’s. The dual transform approach and fractional-order modeling provide a
solid foundation for comprehending the intricate interconnections seen in the neural calcium
reaction-diffusion process.
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Limitation and future scope

In this work, the experimental setup could play a pivotal role in the understanding of neuronal
degenerative diseases.
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