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Abstract

The α-cells are a part of islets of Langerhans located in the pancreas and are responsible for glucagon
secretion. Calcium signaling is crucial for the regulation of the functions and structure of these α-cells
and the same is still not well understood. Here a mathematical model is framed to obtain more insights
into calcium signaling in α-cells. The non-linear reaction-diffusion equation for calcium signaling
along with boundary conditions is employed to propose the model for a one-dimensional steady-state
case. The numerical solutions were obtained using the Newton-Raphson method and the cubic spline
method. The combination of Newton-Raphson and cubic spline has proved to be quite effective in
numerical simulations and in generating deeper insights into calcium regulation in an α-cell under
various conditions. The results provide information about changes in source influx, buffers, ER leak,
and SERCA pump leading to disturbances in calcium homeostasis, which can be responsible for the
development of diabetes and other metabolic disorders.
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1 Introduction

In order to maintain normal physiology and metabolism, calcium homeostasis mechanisms
regulate ionized plasma calcium (Ca2+) concentration in the human body within a specific range.
The cytosolic calcium is kept at a very low-level [1]. The cytosolic calcium level can rise by releasing
calcium from intracellular reserves and bringing calcium in from external sources. The calcium
level within the α-cell regulates biophysical processes like the formation and secretion of glucagon
hormone [2]. The free calcium level inside the α-cell is maintained at 0.1 µM under resting
conditions. The α-cells have pyramidal shape and size about 8 µm in diameter and they appear in
groups [3]. Due to the electrically excitable nature, the α-cells continuously generate overshooting
action potentials when the release of glucagon is induced at a low concentration of glucose.
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Voltage-gated Na+ and Ca2+ channels are crucial for the upstroke of action potentials. Voltage-
gated Ca2+ channels (VGCCs) are opened by the discharge of high-voltage action potentials
allowing extracellular calcium to enter the cytosol. As a result, the number of intracellular
calcium rises, which triggers the glucagon granule exocytosis process thereby leading to the
fusion of hormone-containing granules with cell membranes and the secretion of the hormones
contained inside. Glucagon secretion is inhibited as blood glucose levels rise. This is most likely
accomplished via a decrease in the activity of P/Q-type calcium channel of α-cells and by SERCA
pump, which stimulates Ca2+-sequestration into the ER [4]. In stable conditions, the glucose level
lies between 70 to 180 mg/dl, i.e., normoglycemia. If it falls below 70 mg/dl, the body experiences
hypoglycemia. The pancreatic α-cells then secrete glucagon, which causes the liver to release
glucose back into the bloodstream, stabilizing its concentration. Contrarily, hyperglycemia occurs
when blood sugar levels rise above 180 mg/dl. The pancreatic β-cells then secrete insulin, which
causes fatty tissue to absorb glucose to bring the blood sugar level back to normal [5]. A lot of
similar secretory machinery has been found in β and α-cells [6]. Disruptions in these mechanisms
are the key factor in the growth of diabetes, which is commonly divided into two categories:
Type-1 diabetes and Type-2 diabetes [5].
Many researchers and scientists have developed a variety of mathematical models for studying
calcium signaling in different cells like myocytes [7–11], neurons [12–26], astrocytes [27–31],
hepatocytes [32–34], fibroblasts [35–38], lymphocytes [39, 40], oocytes [41–48], acinar cells [49–51],
dendritic spines [52], etc. In order to understand the kinetics of calcium signaling in endothelial
cells, Wiesner et al. [53] constructed a model which gives a mathematical explanation of how
calcium affects the ability of the endothelial cell to transmit signals. A mathematical model was
created by Handy [27] to investigate the effects of calcium pumps, channels, ER leak, SERCA,
and other elements on calcium dynamics in astrocytes. They proposed that modifications to this
parameter’s ratio had a direct impact on the cytosolic calcium levels in astrocyte cells. The calcium
dynamics in a neuron have been examined by Futagi and Kitano [54]. They computationally
analyzed the effect of the ryanodine receptor and how it can cause the fluctuation in the calcium
profile. Proposing a finite element model, Tewari and Pardasani [19–23] demonstrated calcium
distribution in neurons. They considered a number of buffers, including EGTA, BAPTA, Troponin,
and Calmodulin for their study. A mathematical model has been created by Jha et al. [28–31] to
investigate the calcium advection and diffusion phenomenon in astrocytes. This model includes
an advection-diffusion equation, suitable boundary conditions, and physiological factors like
diffusion coefficient, buffers and VGCC. To acquire the numerical results, they used the finite
element method. Naik and Pardasani [41–46] used the same technique to investigate the calcium
distribution in oocyte cells while buffer, VGCC, and receptor were present. Due to these variables,
they saw a considerable variation in calcium profiles. Pathak and Adlakha [7–9] investigated the
finite element model in order to confirm the physiological mechanism of calcium homeostasis in
myocytes by considering factors such as a leak, pump and excess buffer. They discovered that
while leaks help to increase calcium concentration, buffers are important to lower it. In recent
years, some advancements have also been made by researchers in the field of computational
modeling. Joshi and Jha [55, 56] considered the fractional reaction-diffusion equation to study
the physiological phenomenon in depth in neurons. Additionally, they expanded their model to
a two-dimensional study and correlated the findings with the physiology of neurodegenerative
disorders [57, 58].
Nowadays, it is commonly acknowledged that insufficient pancreatic hormone secretion is the
major cause of the emergence of diabetes [59]. Impaired insulin profile has been the main topic
of study these days. Several computational and theoretical studies have been devoted to the
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exocytosis and electrical behavior of β-cell [60, 61], but there is relatively little information available
regarding the modeling of the calcium signaling in pancreatic α-cell. Diderichsen and Gopel [62]
established a mathematical model of electrical activity based on the ion channel properties of
α-cells found on the surface of healthy mouse islets in 2006. Additionally, their model was revised
by Watts and Sherman [6] in 2014 to include calcium dynamics and secretion. Similar findings of
secretion, calcium dynamics and electrical activity were described theoretically by Fridlyand and
Philipson [63] in 2012. Exocytosis and secretion were mostly analyzed [6, 62, 63] as an impact of
electrical activity, although the primary goal was on the modulation of α-cell electrical activity. A
mathematical model was constructed by Montefusco and Pedersen [64] to test the α-cells electrical
activity modulations that result in glucose administration. They describe the intracellular calcium
profile with a focus on simulating calcium concentrations in the microdomains implicated in the
release of glucagon. Briant et al. [4] investigated the mechanisms behind metabolic regulation
of glucagon secretion of α-cells with the help of a mathematical model. They also examined
the paracrine and intrinsic mechanisms of α-cells. Brereton et al. [65] in their work concluded
that inter-islet communication is restored by both islet architecture and cellular functions. It
is also responsible for glucose homeostasis in diabetes. González-Vélez et al. [2] investigated
the importance of calcium and glucose maintaining the secretion of glucagon hormone through
α-cells. They also established that the secretion of glucagon is potentiated by calcium variation
in comparison to a constant level of intracellular calcium. The model emphasized the exocytosis
of α-cell and gave the tools helping in the study of modulators involved in glucagon secretion.
Moede et al. [66], in their research work, gave the relationship of α and β-cells. Their main focus
was the hormones secreted by α-cells, such as acetylcholine and glucagon. The inter-relationship
of α and β-cells is affected by different architectures of the islet in various species.
From the literature survey, it can be observed that glucagon secretion is responsible for maintaining
the glucose level and it depends on the calcium signaling of the cells. Most of the studies found in
the literature are based on either the electrical activity of the α-cells [6, 62, 63] or they describe the
metabolic regulation of glucagon secretion theoretically [2, 4]. On the other hand, several attempts
have been made to solve the linear form of the reaction-diffusion model for the other cells using
different mathematical techniques like FEM and FVM [23, 31, 32, 46]. It has been noted that no
attempts have been made to analyze the non-linear calcium distribution involving SERCA pump
and ER leak in an α-cell. Furthermore, little is known about how numerous factors including
diffusion, influx, the SERCA pump and ER leak affect calcium signaling in α-cells. The previous
studies on calcium signaling in various cells with the help of the finite element method used linear
interpolation functions which required a large number of elements to achieve the desired accuracy.
In the present paper, the above-mentioned issues are addressed by developing a mathematical
model of calcium signaling in an α-cell. The non-linear reaction-diffusion equation along with
boundary conditions is employed to construct a model in the form of a boundary value problem.
The numerical results are calculated by using the combination of the cubic spline method and
the Newton-Raphson method. The cubic spline method is employed to obtain an approximation
of the field variable in the cell domain. The Newton-Raphson approach has been implemented
to effectively obtain the numerical solution of the non-linear equations. The way the study is
performed is as follows: the steady state distribution of calcium in an α-cell is modeled by a
non-linear reaction-diffusion equation in Section 2. In Section 3, the calcium profile for various
physiological parameters is discussed. Section 4 completes our discussion with conclusions.
Finally, in Section 5, the algorithms of the cubic spline method and Newton-Raphson method are
given.
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2 Construction of the mathematical model

The proposed model incorporates two mechanisms of calcium influx due to an ER leak and
outflow caused by the SERCA pump. We begin by assuming a single well-mixed pool (like the
cytoplasm of the α-cell) where a bimolecular association interaction of calcium and buffer takes
place. The calcium-buffer binding and unbinding equation is given by [67, 68]:

Ca2+ + B
k+
⇋
k−

CaB, (1)

where Ca2+, B and CaB denote the free calcium, free buffer and calcium-bound buffer respectively.
The terms k+ and k− are the rate constants for association and dissociation, respectively.
The required equation for analyzing the calcium regulation in an α-cell is given as follows [61, 64,
67, 68]:

∂[Ca2+]

∂t
= DCa∇2[Ca2+]− k+i [Bi]∞([Ca2+]− [Ca2+]∞) + Jleak − JSERCA, (2)

where DCa is the diffusion coefficients of free Ca2+ and Jleak and JSERCA represent the ER leak and
SERCA pump flux, respectively and given as follow:

Jleak = PER([Ca2+]ER − [Ca2+]), (3)

where PER leak permeability out of the ER and [Ca2+]ER is the free calcium concentration in ER.

JSERCA = Pmax
SERCA

[Ca2+]2

k2
pump + [Ca2+]2

, (4)

where Pmax
SERCA and kpump are the maximum pumping rate and half maximum pump activity of

SERCA pump, respectively [64, 69].

For one-dimensional steady-state case in cartesian coordinates, the equation (2) is given by:

∂2[Ca2+]

∂x2 −
k+[B]∞

DCa
([Ca2+]− [Ca2+]∞)+

PER
DCa

([Ca2+]ER − [Ca2+])−
Pmax

SERCA
DCa

[Ca2+]2

k2
pump + [Ca2+]2

= 0.

(5)
The source term of the calcium is assumed at the point x=0 µm, thus the flux boundary is given as
follows [68]:

lim
x→0

(
−DCa

∂[Ca2+]

∂x

)
= σCa. (6)

The other end boundary is assumed at the resting state i.e., the background calcium concentration
is assumed at that point and expressed as follows:

lim
x→∞[Ca2+] = 0.1µM. (7)
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Re-writing equation (5), we get:

∂2y
∂x2 − Ay − B

y2

k2
pump + y2 + C = 0, (8)

where

A =
k+[B]∞ + PER

DCa
,

B =
Pmax

SERCA
DCa

,

C =
k+[B]∞[Ca2+]∞ + PER[Ca2+]ER

DCa
,

and y denotes the [Ca2+]. In past studies, various research workers have used the finite element
method with linear interpolation functions. The linear interpolation functions give linear ap-
proximation within each subdomain/interval giving a polygonal curve for the field variable as
an approximation to a real/smooth curve within the whole domain/cell. Therefore to achieve
good approximation the smaller step size is taken to discretize the domain in a larger number of
elements/intervals to make a polygonal curve very close to the smooth curve of the field variable
in the domain/cell to achieve good accuracy. Here the cell size is very small i.e. few microns.
Further, the cubic splines are superior to linear interpolation as it satisfies higher-order continuity
conditions to give smooth curves and its order of approximation is higher than the order of
approximation of linear interpolation functions. Thus, we have two options to achieve good
approximation: (i) Use linear interpolation functions and take a smaller step size to divide the
domain into a larger number of intervals/elements or (ii) Use higher order interpolation functions
like cubic splines and divide the domain in a smaller number of intervals/elements. The first
option requires a larger number of elements which in the case of the nonlinear system becomes
very complicated and requires large computational efforts. The second option of using cubic
splines requires a smaller number of elements leading to a smaller number of nonlinear equations
thereby reducing complications and requiring less computational effort but more mathematical
manipulations. Here we use the second option and discretize the cell into eight equal elements to
obtain better results by solving a more realistic model. The cubic spline method [70, 71] has been
applied to solve the model given by equation (8) and the boundary conditions equation (6) and
(7). Thus, equations for the internal nodes are given as follows:

h
6

Nj−1 +
2h
3

Nj +
h
6

Nj+1 =
yj+1 − 2yj + yj−1

h
, (9)

where

Nj = Ayj + B
y2

j

k2
pump + y2

j
− C, (10)
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where j = 1, 2, 3, · · · , 7 and h = xj − xj−1.
Substituting the value of equation (10) in equation (9) and after rearranging, we get:(

Ah
6

−
1
h

)
yj−1 + 2

(
Ah
3

+
1
h

)
yj +

(
Ah
6

−
1
h

)
yj+1

+
Bh
6

(
y2

j−1

k2
pump + y2

j−1
+ 4

y2
j

k2
pump + y2

j
+

y2
j+1

k2
pump + y2

j+1

)
− Ch = 0,

(11)

where j = 1, 2, 3, · · · , 7.
Condition for the right boundary is obtained by using equation (7):

y8 − 0.1 = 0. (12)

Applying the cubic spline method on equation (6), the condition for the left boundary is given as
follows:

−
h
3

Nj −
h
6

Nj+1 +
yj+1 − yj

h
= −

σCa
DCa

, (13)

N0 =
3
h2 (y1 − y0)−

1
2

N1 +
3
h

σCa
DCa

. (14)

Combining equations (11), (12) and (14), a non-linear system of 9 equations has been obtained. A
MATLAB program of the Newton-Raphson method for the nonlinear system has been developed
to solve the obtained system. In Table 1, biophysical parameters and corresponding numerical
data are presented.

Table 1. Biophysical parameters and numerical data [64, 68, 69]

Notation Name of the parameter Numerical value
DCa Diffusion Coefficient 250 µm2/sec
K+ Association rate of EGTA 1.5 µM/sec
B∞ EGTA 5 µM
PER Calcium leak permeability of ER 0.0001 /sec
Pmax

SERCA Maximum pumping rate of SERCA 0.105 µM/sec
kpump Half-maximum pumping rate of SERCA 0.5 µM
[Ca2+]∞ Cytosolic calcium at rest 0.1 µM
[Ca2+]ER Calcium concentration in ER 22.8 µM
σCa Source influx 15 pA

3 Results and discussion

The data of the parameters listed in Table 1 were used to compute numerical solutions. The
profiles for calcium concentration with respect to space for different conditions have been plotted.
Figure 1 depicts the cytosolic calcium of the α-cell with respect to space. It can be observed from
the figure that concentration is initially high near the source influx and then gradually drops as
we move away from the source. However, at the other end, it attains its equilibrium value which
is 0.1 µM. Active pumps and buffers within the α-cell were the cause of the change in calcium
concentration with regard to space.
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Figure 1. Calcium concentration for standard values of parameters given in Table 1
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Figure 2. Calcium concentration for different values of diffusion coefficients



Singh et al. | 47

The spatial variation in calcium concentration as the diffusion coefficient values change from 150
to 200 and 200 to 250 µm2/sec is shown in Figure 2. The diffusion coefficient is defined as the
amount of diffusing substance moved per unit area per unit of time from one portion of the cell
to another. This indicates that calcium ions will flow quickly from the apical to the basal portion
of the cell for a larger value of DCa. For DCa = 250 µm2/sec, less free calcium accumulates in
the space as more calcium is carried through the cell. Therefore, the concentration of calcium
decreases as the magnitude of the diffusion coefficient increases. The amount of free calcium is
clearly inversely proportional to the diffusion coefficient, as seen in the graph.
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Figure 3. Calcium concentration for different values of source influx

The spatial change in calcium concentration when the value of source amplitude σCa is 1, 15 and
30 pA respectively is shown in Figure 3. The unit of characteristic amplitude current passing
through a channel is pico amperes (pA). The open channel permits ions to pass and is measured
as current. As the source amplitude’s value increases, more calcium is released into the cytosol.
Thus it leads to an increase in the concentration of free calcium. It can be seen from Figure 3
that the concentration of calcium is 1.1, 1.3 and 1.5 µM respectively for 1, 15 and 30 pA source
amplitude at the mouth of a point source and thereafter it decreases uniformly up to 0.1 µM. The
appropriate experimental results are still not available for comparison, but however, the outcomes
of the suggested model are consistent with biological facts.

Figure 4 represents the spatial change in calcium profile for various EGTA buffer quantities. It
can be noticed that different quantities of buffers have different effects on the calcium profile.
The maximum calcium concentration occurs for EGTA = 10 µM and the minimum calcium
concentration occurs for EGTA = 50 µM. In all three EGTA buffers above with different quantities,
the concentration of calcium decreases with an increase in the concentration of cytosolic buffer
inside the α-cell.

Figure 5 demonstrates the effect of different pumping rates on the calcium concentration inside
the α-cell. The graph shows three different pumping rates. When the pumping rate Pmax

SERCA is 0.1
µM/sec, the cytosolic calcium is higher and the concentration begins to decline as the pumping
rate increases. Calcium concentration also decreases with an increase in the distance of the cell
from the source.
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Figure 6. Calcium concentration for different values of ER leak

Figure 6 demonstrates the effect of different leak rates (PER). Here with an increase in the distance
from the source of the cell, the calcium concentration inside the cell decreases. The gaps observed
among the curves in the figure indicate that leak helps in raising the cytosolic calcium with the
increase in leak rate. The figure also shows how altering the leak rates causes variations in calcium
concentration.

4 Conclusion

A one-dimensional steady-state model for calcium distribution has been proposed and effectively
used to examine the roles of different factors like EGTA buffers, source influx, leak, pump, etc.
on the cytosolic calcium concentration of the α-cell. The combination of the cubic spline and
Newton-Raphson method has proved to be effective for solving non-linear reaction-diffusion and
performing numerical simulations to obtain valuable results. The following conclusions have been
drawn:

i. The buffers and pumps are crucial in lowering calcium levels in an α-cell.
ii. The source influx and leak are crucial in raising the calcium concentration in an α-cell.

iii. The cell has a beautiful mechanism for balancing this calcium concentration by elevating and
reducing mechanisms to regulate the calcium concentration at appropriate levels necessary for
normal cell survival.

iv. The proposed model is the first non-linear spatial model for studying relationships among
the parameters like buffers, SERCA pump, ER leak and source influx involved in the calcium
homeostasis of an α-cell.
v. Combination of cubic spline and Newton-Raphson method is superior as compared to the
other methods like finite element method with linear shape functions, as the proposed approach
required less number of elements and less amount of computational effort for solving non-linear
reaction-diffusion model as compared to the finite element method with linear shape functions
and Gauss elimination method used by most of the earlier research workers for solving linear
reaction-diffusion model of calcium homeostasis in various other cells.

The proposed model gives better insight into the role of various parameters in regulating calcium
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concentration in an α-cell. This information is crucial in controlling the disorders and diseases
caused by the dysfunction of α-cell like diabetes, etc. The model can be applied in the study
of diabetes, as it gives information about the factors involved in calcium regulation of α-cell.
Calcium directly regulates glucagon secretion through α-cells. So, with the help of the model, it is
possible to observe the factors responsible for the disruption of glucagon secretion, which is one
of the main factors in regulating the blood glucose level and responsible for the development of
diabetes and many other metabolic disorders. The information about the relationships among
the various parameters involved in the regulation of calcium level in the α-cell obtained from the
proposed model can be useful for developing a framework for the diagnosis and treatment of
various disorders like diabetes, etc. The proposed model and approach can also be extended for
its applications in various other cells like neurons, astrocytes, myocytes, oocytes, and β-cells for
calcium homeostasis and their respective disorders.

5 Appendix

Cubic spline method

The essential idea for using the cubic spline method is to fit a piecewise function with the help of
cubic polynomials:

Q(x) =


q1(x), x ∈ [x1, x2]

q2(x), x ∈ [x1, x3]
...

qn−1(x), x ∈ [xn−1, xn]

, (15)

q ′
j s denotes the cubic polynomial and is defined as follows:

qj(x) = aj(xj − x)3 + bj(xj − x)2 + cj(xj − x) + dj, (16)

for j = 1, 2, 3, · · · , n − 1.
As it is expected that the curve Q(x) must be continuous across its full interval, it follows that
each sub-function must connect at the data points,

qj(xj) = qj−1(xj), (17)

for j = 2, 3, · · · , n.
The derivatives at the data points must also be equal in order for the curve to be smooth over the
interval; so,

q ′
j (xj) = q ′

j−1(xj), (18)

for j = 2, 3, · · · , n.
Lastly, since q ′′

j (x) has to be continuous across the interval,

q ′′
j (j) = q ′′

j−1(xj),

for j = 1, 2, 3, · · · , n − 1.
After simplifying the above equations (15), (16), (17) and (18), the cubic spline Q(x) interpolating
to the function y(x) at the knots xj = x0 + jh for j = 1, 2, 3, · · · , n − 1 is given in the interval
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xj−1 ≤ x ≤ xj by the equation,

Q(x) = Nj−1
(xj − x)3

6h
+ Nj

(x − xj−1)
3

6h
+

(
yj−1 −

h2

6
Nj−1

)
(xj − x)

h
+

(
yj −

h2

6
Nj

)
(x − xj−1)

h
,

(19)
where Nj = Q ′′(xj) and yj = y(xj).

Q ′(x+j ) = −
h
3

Nj −
h
6

Nj+1 +
yj+1 − yj

h
, (20)

for j = 0, 1, 2, 3, · · · , n − 1.

Q ′(x−j ) =
h
3

Nj +
h
6

Nj−1 +
yj − yj−1

h
, (21)

for j = 1, 2, 3, · · · , n. The continuity of the first derivative implies,

h
6

Nj−1 +
2h
3

Nj +
h
6

Nj+1 =
yj+1 − 2yj + yj−1

h
, (22)

where j = 1, 2, 3, · · · , n − 1 and h = xj − xj−1.

Newton-Raphson method

Consider a non-linear system of equations,

f1(x1, x2) = 0,

f2(x1, x2) = 0.
(23)

Let x(0) = (x(0)1 , x(0)2 ) be the initial guess to estimate the solution and f be differentiable at x(0).
The equation to the tangent plane to the function yi = fi(x1, x2) at x(0) for i = 1, 2 is,

yi − fi(x(0)) =
∂

∂x1
[ fi(x(0))](x1 − x(0)1 ) +

∂

∂x2
[ fi(x(0))](x2 − x(0)2 ). (24)

The above expression can be written in terms of the Jacobian matrix J(x(0)1 , x(0)2 ) as follows:[
y1 − f1(x(0))
y2 − f2(x(0))

]
=

[
∂

∂x1
[ f1(x(0))] ∂

∂x2
[ f1(x(0))]

∂
∂x1

[ f2(x(0))] ∂
∂x2

[ f2(x(0))]

] [
(x1 − x(0)1 )

(x2 − x(0)2

]
. (25)

If the given system is expressed as a vector V = F(x), then from equation (25);

∆F ≈ J(x(0)1 , x(0)2 )∆X. (26)

Suppose that (p1, p2) be the solution of equation (23); that is,

f1(p1, p2) = 0,

f2(p1, p2) = 0.
(27)
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To solve the equation (23) using Newton’s approach, we must take into account a little change in
the function near the coordinates (p(0)1 , p(0)2 ):

∆y1 = y1 − f1(x(0)), ∆x1 = (x1 − p(0)1 ),

∆y2 = y2 − f2(x(0)), ∆x2 = (x2 − p(0)2 ).
(28)

Set (x(0)1 , x(0)2 ) = (p1, p2) in equation (23) and use equation (27) to see that (y1, y2) = (0, 0). Hence
the changes in the dependent variables are:

y1 − f1(x(0)) = f1(p1, p2)− f1(p(0)1 , p(0)2 ) = 0 − f1(p(0)1 , p(0)2 ),

y2 − f2(x(0)) = f2(p1, p2)− f2(p(0)1 , p(0)2 ) = 0 − f2(p(0)1 , p(0)2 ).
(29)

Use the result of equation (29) in equation (25) to get the linear transformation,[
∂

∂x1
[ f1(P0)]

∂
∂x2

[ f1(P0)]
∂

∂x1
[ f2(P0)]

∂
∂x2

[ f2(P0)]

] [
∆x1
∆x2

]
≈
[

f1(P0)

f2(P0)

]
, (30)

where P0 = (p(0)1 , p(0)2 ). If the Jacobian J(P0) in (30) is nonsingular, we can solve for

∆P = [∆x1, ∆x2]
′ = [p1, p2]

′ − [p(0)1 , p(0)2 ] ′

as follows:

∆P ≈ J(P0)
−1F(P0). (31)

Then the next approximation P1 to the solution P is,

P1 = P0 + ∆P = P0 − J(P0)
−1F(P0). (32)

For a system of n number of equations, Newton’s method can be written by generalizing the
equation (30).
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