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Abstract
In this work, a fractional-order vaccination model for the novel Coronavirus 2019 (COVID-19) incor-
porating environmental transmission is considered and analyzed using tools of fractional calculus.
The Laplace transform technique and the fixed point theorem lay out the model solutions’ existence
and uniqueness. The solutions’ positivity and boundedness are also demonstrated. Additionally, the
stability of the model’s equilibrium points is discussed using the fractional-order system stability
theory. The model is fitted using the data sets for the Pfizer vaccination program in Nigeria from April
1, 2021, to June 10, 2021. In conclusion, simulation results for various fractional parameter values
are presented. It has been observed that increasing fractional-order values has distinct effects on the
various model compartments, for R0 < 1 and R0 > 1, respectively.
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1 Introduction

In 1965, scientists found a human coronavirus in the passageway that separates the upper and
lower parts of the human body to let in and let out the air. [1] was the first discovered in an adult
with a common cold. Humans can become infected with seven different kinds of coronavirus.
In 2002, the sort liable for the serious intense respiratory condition (SARS) arose in South China.
For a brief period, it impacted 28 different nations, giving an all-out number of around 8000
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additional infected individuals bringing about 774 passings by July 2003, with a little increase
in 2004 having just four additional cases, [2]. Experts believe that bats are the source of the
coronavirus (SARS-COV2), which also gave rise to the middle east respiratory syndrome (MERS)
and severe acute respiratory syndrome (SARS) [3]. It is one of a group of viruses that can cause a
variety of symptoms, including fever, pneumonia, difficulty breathing, and a lung infection. In
China, Wuhan Hubei province, an outbreak of a respiratory illness occurred in December 2019.
The WHO declared Coronavirus disease (COVID-19) a global public health emergency due to the
virus’s rapid spread and as the leading cause of this illness. According to WHO, it affected roughly
19 countries by the end of January 2020, with 11791 confirmed cases and 213 deaths. The common
symptoms are dry cough, exhaustion, fever (although some older people may not experience these
symptoms), aches and pains, nasal congestion, a runny nose, sore throat, or diarrhea [4]. Droplets
from the infected person’s mouth or nose can spread the virus between people who are within
two meters away from each other. It can likewise be spread in ineffectively ventilated indoor
settings where individuals stay for a more broadened period, [4]. Reports show that transmission
in children between the ages of 10-14 and teenagers have lower vulnerability than grown-ups, [5],
[6]. Millions of people around the world, including in China, Canada, the United States, France,
and Germany, have contracted COVID-19 since its discovery. According to the National Centers
for Disease Control and Prevention (NCDC), as of June 25, 2021, approximately 167430 individuals
in Nigeria had been identified as carrying the virus, 163937 individuals had been discharged, and
approximately 2119 deaths had been recorded [7].
Mathematical models have become excellent tools for comprehending the behavior of infectious
diseases [8, 9]. There have been a variety of approaches taken to investigate the means by which
the disease is transmitted from person to person, the ways in which it can be avoided, and the
possibilities for infectious disease control. Mathematical models have been an essential device or
tool in completing this task. Numerous models have been developed by numerous individuals,
including mathematicians and biologists, since the COVID-19 outbreak to explain the virus’s
spread from person to person. Mathematical modeling of COVID-19 transmission was taken into
consideration by Sarita et al. [10]. They considered the roles of different intervention strategies such
as lockdown, quarantine, and isolation of symptomatic individuals. They concluded in the model’s
numerical simulation and sensitivity analysis that disease could be prevented or controlled by
minimizing close association, increasing the effectiveness of confined and quarantined individuals
with symptoms. Enahoro et al. [11] examined the COVID-19 pandemic in Nigeria through
mathematical modeling and analysis. They examined the model by applying the data gotten
from the Nigeria Center for disease control (NCDC). Okuonghae and co-authors [12] analyzed
Lagos’ COVID-19 population dynamics using a mathematical model and concluded that the
virus’s prevalence would significantly decrease if regular social isolation, mask use, and other
preventative measures were maintained. Bashir et al. [13] fostered an ideal optimal control
model for the Coronavirus (COVID-19) pandemic. Their findings demonstrated that the control
effect of increasing the number of susceptible individuals decreases the number of infectious
individuals. Mohammed and others [14] looked into a fractional-order mathematical model for the
dynamics of COVID-19 that included quarantine, isolation, and the viral load in the environment.
The model’s numerical simulation demonstrated that a 50% increase in the isolation rate of
exposed individuals will significantly reduce the number of infected cases. It would likewise be
diminished if the asymptomatic infected individual could take precautionary measures and quit
working uninhibitedly in a susceptible population. Omame et al. [9] developed a fractional-order
model for COVID-19 and tuberculosis co-infection utilizing the Atangana-Baleanu derivative.
According to their simulations, reducing the risk of COVID-19 infection among people with
inactive tuberculosis also reduces the spread of the virus and the two diseases simultaneously
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affecting a population. Using the Caputo-Fabrizio derivative and the homotopy analysis transform,
Baleanu et al. examined a fractional-order model for COVID-19 transmission in their research.
A convergent series solution was provided for the model [16]. Rezapour and others [15] also
considered a Caputo derivative-based SIR model; using reliable data and an approximate fractional
Euler solution, their model predicts the transmission of COVID-19 from one infected person to
another in Iran and around the world.
Fractional differential equations have gained wider applications in the modelling of physical and
biological processes in recent years [17–20]. It has demonstrated its importance due to its capacity
to capture the memory, hereditary, and also properties that are not local [21]. Fractional derivatives
and integrals are crucial for epidemiological modeling as they store relevant information for
recollection, which will assist with spreading disease. A lot of models to control disease circulation
have been extensively analyzed using fractional derivatives [22–26].
With the help of the Caputo fractional-order derivative, the primary goal of this study will be to
develop a novel vaccination model for COVID-19 that incorporates environmental transmission
and is tailored to actual Nigerian data. This study will significantly contribute to understanding
the effective transmission of Coronavirus in our immediate environment. The main motivation
for using the Caputo fractional derivative is that it has a unique way of dealing with pressing
issues that affect people, like an epidemic, and also allows the conventional, initial, and boundary
conditions to be taken into account [27, 28].

2 Preliminaries

Some relevant definitions and methodologies required in this paper are now highlighted in this
subsection.

Definition 1 [29] Fractional integral of order ψ > 0, ψ ∈ R+ reads

Jψ
t f (t) =

1
Γ(ψ)

∫ t

0
(t − ζ)ψ−1 f (ζ)dζ, t > 0,

with the symbol Γ as the Gamma function given as

Γ(ψ) =
∫∞

0
exp(−ζ)ζψ−1dζ, Γ(ψ + 1) = ψΓ(ψ), Re{ψ} > 0,

where f (t) = 1, the fractional integral of order ψ > 0 reads

Jψ
t (1) =

1
Γ(ψ)

∫ t

0
(t − ζ)ζ−1(1)dζ =

tψ

Γ(ψ + 1)
.

Definition 2 [29] Caputo fractional derivative of order ψ > 0, ψ ∈ R+ reads

Dψ
t f (t) = Jn−ψ

t Dn f (t) =
1

Γ(n − ψ)

∫ t

0
(t − ζ)n−ψ−1 f (n)(ζ)dζ,



Atede et al. | 81

having n as a non-negative integer giving as n − 1 < ψ ≤ n, and 0 < ψ ≤ 1, the definition above
reduces to

Dψ
t f (t) =

1
Γ(1 − ψ)

∫ t

0
(t − ζ)−ψ f ′(ζ)dζ. (1)

Definition 3 ([29]) Caputo fractional derivatives can simply be defined as

Dψ
t (t − t0)

q =
Γ(q + 1)(t − t0)

q−ψ

Γ(q − ψ + 1)
,

with 0 < ψ ≤ 1, q > −1.

Definition 4 Series expansion of the Mittag-Leffler of two-parameter α1, α2 type function is given as

Eα1,α2(z) =
∞∑

r=0

zr

Γ(α1r + α2)
, α1 > 0, α2 > 0, z ∈ C. (2)

It follows from (2) that

E1,1(z) =
∞∑

r=0

zr

Γ(r + 1)
=

∞∑
r=0

zr

r!
= ez,

The renowned exponential function. Further

E1,2(z) =
∞∑

r=0

zr

Γ(r + 2)
=

∞∑
r=0

zr

(r + 1)!
=

1
z

∞∑
r=0

zr+1

(r + 1)!
=

ez − 1
z

,

Generally

E1,n(z) =
1

zn−1 ×
(

ez −

n−2∑
r=0

zr

Γ(r + 1)

)
.

Definition 5 [29] Laplace transform of Caputo fractional derivative (1) is given as

L
{

Dψ
t f (t)

}
= sψ f̃ (s)− sψ−1 f (0), 0 < ψ ≤ 1, (3)

with L as the Laplace transform operator, and f̃ (s) = L{ f (t)}.

Lemma 1 [30] Given ψ ∈ R+, θ1(t) and θ2(t) stand for the non-negative functions and θ3(t) stands for
both the non-negative together with the increasing function for 0 ≤ t ≤ S, S > 0, θ3(t) ≤ N, with N as a
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constant. Supposing

θ1 ≤ θ2 + θ3(t)
∫ t

0
(t − ζ)ψ−1θ1(ζ)dζ,

then

θ1 ≤ θ2Eψ

(
θ3(t)

π

Γ(1 − ψ) sin(πψ)
Sψ

)
.

3 Model formulation

At a certain time t, we represent the entire population of humans with NH(t), which we divide into
the states of being such that the occurrence of any one implies the non-occurrence of all the others
(mutually exclusive) subdivision of a population of unvaccinated susceptible individuals (SC(t)),
individuals vaccinated with the Pfizer vaccine (VC(t)), asymptomatic infectious individuals (AC(t)),
unvaccinated symptomatic infectious individuals (JU(t)), vaccinated symptomatic infectious
individuals (JV(t)) and recovered individuals (R(t)). Hence, NH(t) = SC + VC + AC + JU + JV + R.

How do we get the population of unvaccinated susceptible individuals, SC, created by bringing
in new individuals at the rate Ω. Contacts with an infected environment cause individuals
to be infected with COVID-19 and therefore reduce an entire population at the rate ϑCEV and
contacts with infected individuals at the rate: β(ωAC+IU+ϱV IV)

NH
. The modification parameter 0 <

θ < 1, accounts for reduced probability of transmission by asymptomatic infectious individuals.
The parameter ϱV(ϱV < 1) is a modification term accounting for the reduced infectiousness
of vaccinated infectious individuals. β is the effective contact rate for transmitting COVID-19
infection from humans. ϑ is the effective contact rate for the transmission of COVID-19 infection
from the infected environment. CEV is the concentration of COVID-19 in the environment. We
can define the active changing mode by which the fractional order model for COVID-19 is being
transmitted in a population by the system of non-linear fractional differential equations in Eq. (4)
below, alongside the Table 1 depicting the connected state variables and parameters in the model
(4).

Dψ
t SC = Ω − δSC −

(
β(ωAC + JU + ϱV JV)

NH

)
SC − ϑCEVSC − µSC,

Dψ
t VC = δSC − (1 − ξ)

(
β(ωAC + JU + ϱV JV)

NH

+ ϑCev

)
VC − µVC,

Dψ
t AC = p

(
β(ωAC + JU + ϱV JV)

NH

+ ϑCEV

)
SC + f (1 − ξ)

(
β(ωAC + JU + ϱV JV)

NH

+ ϑCEV

)
VC

−(γA + µ)AC, (4)

Dψ
t JU = (1 − p)

(
β(ωAC + JU + ϱV JV)

NH

+ ϑCEV

)
SC − (γJU + dJU + µ)JU,

Dψ
t JV = (1 − f )(1 − ξ)

(
β(ωAC + JU + ϱV JV)

NH

+ ϑCEV

)
VC − (γJV + dJV + µ)JV,

Dψ
t R = γA AC + γJU JU + γJV JV − µR,

Dψ
t CEV = χ1 AC + χ2 JU + χ3 JV − µEVCEV,

with the corresponding initial conditions
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SC(0) ≥ 0, VC(0) ≥ 0, AC(0) ≥ 0, JU(0) ≥ 0, JV(0) ≥ 0, R(0) ≥ 0, CEV(0) ≥ 0. (5)

Table 1. Representation of the variables in the model (4)

Variable Interpretation
Sc unvaccinated susceptible individuals
Vc Vaccinated with vaccine (Pfizer)
Ac Asymptomatic individuals (vaccinated and unvaccinated)
Ju unvaccinated symptomatic individuals
Jv Vaccinated symptomatic individuals
R Recovered humans
Cev COVID-19 concentration in the environment

Table 2. Representation of parameters in the model (4)

Parameter Interpretation Baseline Value Reference

Ω Recruitment rate 206139587
54.69×365 day−1 [31]

β Effective transmission rate of COVID-19 0.00016708 Fitted
δ COVID-19 vaccination rate 0.0059day−1 Fitted
µ Natural death rate 1

54.69×365 day−1 [31]
ξ COVID-19 vaccine efficacy 0.95 [32]
p Fraction of unvaccinated susceptible that move

to asymptomatic class 0.5 Assumed
f Fraction of vaccinated susceptible that move

to asymptomatic class 0.5 Assumed
ω Modification parameter that accounts for

reduced infectiousness of humans
in Ju class in comparison with humans
in Jv class 0.7 [12]

γa, γju, γjv Recovery rates for individuals
in the Ac, Ju, and Jv classes, respectively 0.13978day−1 [12]

µev COVID-19 removal rate from the environment 0.03day−1 Assumed
dju, djv Disease induced death rates for

individuals in the Ju, and Jv classes, respectively 0.015 [12]
χ1, χ2, χ3 Virus shedding rates from

infected humans 0.0005day−1 Assumed

Fundamentals of the model

The boundedness and positivity of the solutions prove that equations (4)-(5) are mathematically
and biologically presented.
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Invariant domain

Theorem 1 Assume SC(t), VC(t), AC(t), JU(t), JV(t), R(t), CEV(t), are solutions to the equations (4)-(5),
then

i. the set ∇ = ∇H ∪∇EV, where,

∇H =

{
(SC(t), VC(t), AC(t), JU(t), JV(t), R(t)) ∈ R7

+ : SC + VC + AC + JU + JV + R,≤ Ω
µ

}
,

∇EV =

{
CEV : CEV ≤

(χ1 + χ2 + χ3)β

µEV

}
,

is positively invariant with regard to the governing model,
ii. each solution to the equations (4)-(5) beginning from the initial point S0, E0, I0, R0 and P0 remain
positive at every value of t ≥ 0.

Proof Let us closely observe the expression below for time t

NH = SC + VC + AC + JU + JV + R. (6)

summing up the equations corresponding to the human compartments of the model generates

Dψ
t NH(t) = Dψ

t SC(t) + Dψ
t VC(t) + Dψ

t AC(t) + Dψ
t JU(t) + Dψ

t JV + Dψ
t R

= Ω − (SC + VC + AC + JU + JV + R) µ

≤ Ω − µNH.

Hence, by using Laplace transform, the inequality becomes

sψÑH(s)− sψ−1NH(0) ≤
Ω
s
− µÑH(s),

from which

ÑH(s) ≤ Ω
s(sψ + µ)

+ NH(0)
sψ−1

sψ + µ
.

By partial fraction, the above expression can be re-written as

ÑH(s) ≤ Ω
µ

1
s
−

sψ−1

µ
(

sψ

µ + 1
)
+ NH(0)

sψ−1

sψ + µ

=
Ω
µ

(
1
s

)
−

(
Ω
µ

− NH(0)
)

1
s

(
1 +

µ

sψ

)−1
,

ÑH(s) ≤ Ω
µ

(
1
s

)
−

(
Ω
µ

− NH(0)
) ∞∑

r=0

(−µ)r

sψr+1 .



Atede et al. | 85

The inverse Laplace transform with the help of (2) gives

NH(t) ≤ Ω
µ

−

(
Ω
µ

− NH(0)
) ∞∑

r=0

(−µtψ)r

Γ(ψr + 1)

≤ Ω
µ

−

(
Ω
µ

− NH(0)
)

Eψ

(
−µtψ

)
.

It follows that as t → ∞
0 ≤ NH ≤ Ω

µ
, (7)

of which the requirements that make equations (4)-(5) bounded and also indicate that there is an
achievable possible region. ■

Positivity

Suppose that by contradiction, the third equation of the model is not true.
Let t1 = min{t : SC(t)VC(t)AC(t)JU(t)JV(t)R(t)CEV(t) = 0}. Suppose AC(t1) = 0, it suggest that
SC(t) > 0, VC(t) > 0, AC(t) > 0, JU(t) > 0, JV(t) > 0, R(t) > 0, CEV(t) > 0, for all [0, t1], suppose by
assumption, the expression below exists,

Θ1 = min
0≤t≤t1{

P
(

β(ωAC + JU + ϱV JV) + ϑCEV

AC

)
SC + f (1 − ξ)

(
β(ωAC + JU + ϱV JV) + ϑCEV

AC

)
VC − (γA + µ)

}
.

It follows that

Dψ
t AC(t)− Θ1 AC(t) > 0. (8)

We state (without proof) that continuous function Φ1 can be established in a way that the equation
below is discovered

Dψ
t AC(t)− Θ1 AC(t) = −Φ1(t).

With the Laplace transform, the last equality becomes

sψ ÃC(sC)− sψ−1 AC(0)− Θ1 ÃC(s) = −Φ̃1(s),

from which

ÃC(s) = AC(0)
sψ−1

sψ − Θ1
−

Φ1(s)
sψ − Θ1

=
AC(0)

s

(
1 −

Θ1

sψ

)−1
−

Φ1(s)
sψ

(
1 −

Θ1

sψ

)−1

= AC(0)
∞∑

r=0

Θr
1

sψr+1 − Φ1(s)
∞∑

r=0

Θr
1

sψr+ψ .

The inverse Laplace transform using the Mittag-Leffler function and forgetting the non-positive
term produces a solution to the above terms in (8) that meets the expression below.
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AC(t) > AC(0)
∞∑

r=0

(Θ1tψ)r

Γ(ψr + 1)
= AC(0)Eψ

(
Θ1tψ

)
.

Hence, the positivity of the solution AC is as follows:

AC(t) > AC(0)Eψ

(
Θ1tψ

)
> 0,

which contradicts AC(t1) = 0. Similarly, suppose JU(t1) = 0 which implies that SC(t) > 0,
VC(t) > 0, AC(t) > 0, JV(t) > 0, R(t) > 0, CEV > 0, for all 0 ≤ t ≤ t1. Assume the expression is true

Θ2 = min
0≤t≤tt

{
(1 − p)

(
β(ωAC + JU + ϱV JV) + ϑCV

JU

)
SC − (γJU + dJU + µ)

}
,

then

Dψ
t JU(t) > Θ2 JU(t). (9)

It follows that a continuous function Φ2(t) may be established in a way that the equation below is
discovered

Dψ
t JU(t)− Θ2 JU(t) = −Φ2(t).

With the Laplace transform, the equation becomes

sψ J̃U(s)− sψ−1 JU(0)− Θ2 J̃U(s) = −Φ̃2(s),

from which

J̃U(s) = JU(0)
sψ−1

sψ − Θ2
−

Φ2(s)
sψ − Θ2

= JU(0)
∞∑

r=0

Θr
2

sψr+1 − Φ2(s)
∞∑

r=0

Θr
2

sψr+ψ .

Using the inverse Laplace transform, applying the Mittag-Leffler function, and forgetting the
non-positive term, the solution to the equation (9) meets that of the quantity below

JU(t) > JU0)
∞∑

r=0

(Θ2tψ)r

Γ(ψr + 1)
= JU(0)Eψ

(
Θ2tψ

)
.

Hence, the positivity of the solution IU is as follows

JU(t) > JU(0)Eψ

(
Θ2tψ

)
> 0,

which contradicts JU(t1) = 0. Applying the similar method of solution to the question above, we
assume JV(t1) = 0 which suggests that SC(t) > 0, VC(t) > 0, AC(t) > 0, JU, R(t) > 0, CEV(t) > 0 for
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all 0 ≤ t ≤ t1. Suppose the expression below is true

Θ3 = min
0≤t≤tt

{
(1 − f ) (1 − ξ)

(
β(ωAC + JU + ϱV JV)

JV

+ ϑCEV

)
VC − (γJV + dJV + µ)

}
.

So that

Dψ
t JV(t) > Θ3 JV(t). (10)

It follows that a continuous function Φ3(t) can be established in a way that the equation below is
discovered

Dψ
t JV(t)− Θ3 JV(t) = −Φ3(t).

By using the Laplace transform, the above inequality becomes

sψ J̃V(s)− sψ−1 JV(0)− Θ3 J̃V(s) = −Φ̃3(s),

from which

J̃V(s) = JV(0)
∞∑

r=0

Θr
3

sψr+1 − Φ3(s)
∞∑

r=0

Θr
3

sψr+ψ .

Applying the inverse Laplace transform using the Mittag-Leffler function and forgetting the
non-positive term, the solution to the equation (10) meets that of the expression below.

JV(t) > JV(0)
∞∑

r=0

(Θ3tψ)r

Γ(ψr + 1)
= JV(0)Eψ

(
Θ3tψ

)
. (11)

Hence, the positivity of the solution JV is as follows

JV(t) > JV(0)Eψ

(
Θ3tψ

)
> 0,

which is not in agreement with the fact that JV(t1) = 0. Likewise, assuming CEV(t1) = 0 which
suggest that SC(t) > 0, VC(t) > 0, AC(t) > 0, JV(t) > 0, R(t) > 0, CEV > 0, for all 0 ≤ t ≤ t1.
Supposing the expression below is true

Θ4 = min
0≤t≤tt

{(
χ1 AC + χ2 JU + χ3 JV

CEV

− µEV

)}
,

then

Dψ
t CEV(t) > Θ4CEV(t). (12)
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It follows that a continuous function Φ4(t) can be established in a way the equation below is
discovered

Dψ
t CEV(t)− Θ4CEV(t) = −Φ4(t).

By using the Laplace transform, the inequality becomes

sψC̃EV(s)− sψ−1CEV(0)− Θ4C̃EV(s) = −Φ̃4(s),

from which

C̃EV(s) = CEV(0)
sψ−1

sψ − Θ4
−

Φ4(s)
sψ − Θ4

= CEV(0)
∞∑

r=0

Θr
4

sψr+1 − Φ4(s)
∞∑

r=0

Θr
4

sψr+ψ .

Applying the inverse Laplace transform using the Mittag-Leffler function and forgetting the
non-positive term, the solution to equation (12) meets that of the quantity below.

CEV(t) > CEV0)
∞∑

r=0

(Θ4tψ)r

Γ(ψr + 1)
= CEV(0)Eψ

(
Θ4tψ

)
.

Hence, the positivity of the solution JU is as follows

CEV(t) > CEV(0)Eψ

(
Θ4tψ

)
> 0,

which contradicts CEV(t1) = 0. Furthermore, the same method of solution will prove that the
positivity of the solutions SC, VC, R and CEV are as follows

SC(t) > SC(0)Eψ

(
Θ5tψ

)
> 0, VC(t) > VC(0)Eψ

(
Θ6tψ

)
> 0,

R(t) > R(0)Eψ

(
Θ7tψ

)
> 0, CEV(t) > CEV(0)Eψ

(
Θ8tψ

)
> 0.

Existence and uniqueness of the solution

This section shows the proof of existence and uniqueness of the solution of fractional model (4)-(5).
The same solution method in [33] is employed here using the theorem of Banach fixed point and
Picard’s operator. Furthermore, for existence, Schauder’s fixed point theorem will be applied in
which the boundedness of the solution shall be proven, too.

The use of fractional integral together with the Caputo fractional derivative model (4) of order
ψ > 0 alongside its corresponding initial conditions (5) present the Volterra-integral equations of
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the second kind below as well as a solution to the fractional model.

SC (t)− SC (0) =
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1L(ζ, SC (ζ))dζ,

VC (t)− VC (0) =
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1 M(ζ, VC (ζ))dζ,

AC (t)− AC (0) =
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1N(ζ, AC (ζ))dζ,

JU (t)− JU (0) =
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1O(ζ, JU (ζ))dζ, (13)

JV (t)− JV (0) =
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1P(ζ, JV (ζ))dζ,

R (t)− R (0) =
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1V(ζ, R (ζ))dζ,

CEV (t)− CEV (0) =
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1Z(ζ, CEV (ζ))dζ.

The functions (L, M, N, O, P, V, Z) : [0, b] → R × R without proof are presumed to be continuous
in such a way that the Banach space, as well as the space of all the continuous functions, are
(R, ∥.∥) and H1([0,b]) respectively which is defined in [0, b] → R formed alongside Chebyshev
norm.

The next thing we want to do is to show if the continuous functions L, M, N, O P, V, and Z meet
the Lipschitz conditions provided

sup
0<t≤S

∥∥∥∥AC

NH

∥∥∥∥ ≤ φ1, sup
0<t≤S

∥∥∥∥ JU

NH

∥∥∥∥ ≤ φ2, sup
0<t≤S

∥∥∥∥ JV

NH

∥∥∥∥ ≤ φ3, sup
0<t≤S

∥∥∥∥CEV

NH

∥∥∥∥ ≤ φ4.

Thus, firstly we get

∥L(Sc1)− L(Sc2)∥ =

∥∥∥∥Ω −

(
δ +

β (ωAC + JU + ϱV JV)

ϑ
CEV + µ

)
Sc1

−

(
Ω −

(
δ +

β (ωAC + JU + ϱV JV)

NH

+ ϑCEV + µ

)
Sc2

)∥∥∥∥
=

∥∥∥∥−βωAC

NH

(Sc1 − Sc2)−
βJU

NH

(Sc1 − Sc2)−
βϱV JV

NH

(Sc1 − Sc2)− ϑCEV (Sc1 − Sc2)

− µ (Sc1 − Sc2)∥ (14)

≤ βω sup
0≤t≤S

∥∥∥∥AC

NH

∥∥∥∥ ∥Sc1 − Sc2∥+ β sup
0≤t≤S

∥∥∥∥ JU

NH

∥∥∥∥ ∥Sc1 − Sc2∥

+ϑ sup
0≤t≤S

∥CEV∥ ∥Sc1 − Sc2∥+ µ ∥Sc1 − Sc2∥+ βϱV sup
0≤t≤S

∥∥∥∥ JV

NH

∥∥∥∥ ∥Sc1 − Sc2∥

≤ LL ∥Sc1 − Sc2∥ ,

where

LL = (βωφ1 + βφ2 + βϱV φ3 + ϑCEV + µ) > 0.
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Secondly,

∥M(V1)− M(V2)∥ =

∥∥∥∥δSC − (1 − ξ)

(
β(ωAC + JU + ϱV JV)

NH

+ ϑCEV

)
Vc1

−

(
δSC − (1 − ξ)

(
β(ωAC + JU + ϱV JV)

NH

+ ϑCEV + µ

)
Vc2

)∥∥∥∥
= −

(
δSC + (1 − ξ)

(
β(ωAC + JU + ϱV JV)

NH

+ ϑCEV + µ

))
∥Vc1 − Vc2∥

=

(
(1 − ξ) βω sup

0≤t≤S

∥∥∥∥AC

NH

∥∥∥∥+ (1 − ξ) β sup
0≤t≤S

∥∥∥∥ JU

NU

∥∥∥∥ (15)

+ (1 − ξ) βϱV sup
0≤t≤S

∥∥∥∥ JV

NH

∥∥∥∥+ δSC + ϑCEV + µ

)
∥Vc1 − Vc2∥

≤ LM ∥Vc1 − Vc2∥ ,

where

LM = ((1 − ξ) βωφ5 + (1 − ξ) βφ3 + (1 − ξ) βϱV φ4 + δS + ϑCEV + µ) > 0.

Applying the same method below, we get

∥N(Ac1)− N(Ac2)∥ =

∥∥∥∥(− (γA + µ) AC + P
(

β (ωAC + JU + ϱV JV)

NH

+ ϑEV

)
SC

)∥∥∥∥
+

∥∥∥∥ f (1 − ξ)

((
β (ωAC + JU + ϱV JV)

NH

+ ϑCEV

))
Ac1

∥∥∥∥
−

∥∥∥∥(− (γA + µ) AC + P
(

β (ωAC + JU + ϱV JV)

NH

+ ϑCEV

)
SC

)∥∥∥∥ (16)

+

∥∥∥∥ f (1 − ξ)

((
β (ωAC + JU + ϱV JU)

NH

+ ϑCEV

)
Ac2

)∥∥∥∥
= (γA + µ) ∥Ac1 − Ac2∥
≤ LN ∥Ac1 − Ac2∥ ,

where

LN = (γA φ5 + µφ3) > 0.

∥O(Ju1)−O(Ju2)∥ =

∥∥∥∥(1 − P)
(

β (ωAC + JU + ϱV JV)

NH
+ ϑCEV

)
SC − ((γJU + dJU + µ)) Ju1

− (1 − P)
(

β (ωAC + JU + ϱV JV)

NH
+ ϑCEV

)
SC − ((γJU + dJU + µ) Ju2)

∥∥∥∥
≤ LO ∥Ju1 − Ju2∥ , (17)

where

LO = (γJJU φ1 + dJJU φ2 + µ) > 0.
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∥P(Jv1)− P(Jv2)∥ =

∥∥∥∥(1 − f ) (1 − ξ)

(
β (ωAC + JU + ϱV JV)

NH

+ ϑCEV

)
SC − (γJV + dJV + µ) Jv1

− (1 − f ) (1 − ξ)

(
β (ωAC + JU + ϱV JV)

NH

+ ϑCEV

)
SC − ((γJV + dJV + µ) Jv2)

∥∥∥∥
≤ LP ∥Jv1 − Jv2∥ , (18)

where

LP = (γJV φ2 + dJV φ3 + µ) > 0.

∥V(R1)− V(R2)∥ = ∥γA A + γJU JU + γJV JV − (µ) R1 − (γA A + γJU IU + γJV IV − (µ) R2)∥
≤ LV ∥R1 − R2∥ , (19)

where

LV = (µ) > 0.

∥Z(CEV1)− Z(CEV2)∥ = ∥χ1 AC + χ2 JU + χ3 JV − (µEV)CEV1 − (χ1 AC + χ2 JU + χ3 JV − (µEV))CEV2∥
≤ ŁZ ∥CEV1 − CEV2∥ . (20)

where

LZ = (µEV) > 0.

Theorem 2 If (LL, LM, LN , LO, LP, LV , LZ)
Γ(1−ψ) sin(πψ)Tψ

ψπ < 1, it follows that the fractional model
(4)- (5) has a unique solution on [0, b]where (L, M, N, O, P, V, Z) : [0, b]× R → R are presumed to be
continuous meeting the Lipschitz condition.

Proof Observe the mapping below η : H1 ([0, b], R) → H1 ([0, b], R), with a well defined η in
(L, M, N, O, P, V, Z) : [0, b]× R → R. Using (15)-(20) and for all ((Sc1, Sc2), (Vc1, Vc2), (Ac1, Ac2),
(JU1, JU2), (JV1, JV2), (R1, R2), (CEV1, CEV2), ∈ H1 ([0, b], R) and 0 ≤ t ≤ S we get

∥η(Sc1(t))− η(Sc2(t))∥ =

∥∥∥∥Sc(0) +
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1 L (ζ, Sc1(ζ)) dζ

∥∥∥∥
−

∥∥∥∥(Sc(0) +
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1 L (ζ, Sc2(ζ)) dζ

)∥∥∥∥ (21)

≤ 1
Γ(ψ)

∫ t

0
(t − ζ)ψ−1 ∥L(ζ, Sc1(ζ))− L(ζ, Sc2(ζ))∥ dζ

≤ LL
Γ(ψ)

∫ t

0
(t − ζ)ψ−1 ∥Sc1(ζ)− Sc2(ζ)∥ dζ

≤ LL

(
Γ(1 − ψ) sin(πψ)Sψ

ψπ

)
∥Sc1 − Sc2∥H1 .
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Similar process yields

∥η(Vc1(t))− η(c2(t))∥ ≤ LM

(
Γ(1 − ψ) sin(πψ)Sψ

ψπ

)
∥Vc1 − Vc2∥H1 ,

∥η(Ac1(t))− η(Ac2(t))∥ ≤ LN

(
Γ(1 − ψ) sin(πψ)Sψ

ψπ

)
∥Ac1 − Ac2∥H1 ,

∥η(Ju1(t))− η(Ju2(t))∥ ≤ LO

(
Γ(1 − ψ) sin(πψ)Sψ

ψπ

)
∥JU1 − JU2∥H1 , (22)

∥η(Jv1(t))− η(Jv2(t))∥ ≤ LP

(
Γ(1 − ψ) sin(πψ)Sψ

ψπ

)
∥Jv1 − Jv2∥H1 ,

∥η(R1(t))− η(R2(t))∥ ≤ LV

(
Γ(1 − ψ) sin(πψ)Sψ

ψπ

)
∥R1 − R2∥H1 ,

∥η(CEV1(t))− η(CEV2(t))∥ ≤ LZ

(
Γ(1 − ψ) sin(πψ)Sψ

ψπ

)
∥CEV1 − CEV2∥H1 .

The condition clearly shows that (LL, LM, LN , LO, LP, LV , LZ)
Γ(1−ψ) sin(πψ)Sψ

ψπ < 1, the parameter η

is a contraction mapping and application of the Banach contraction mapping principle, signifying
that the parameter η has a unique fixed point in 0 ≤ t ≤ S. ■

Using the theorems of Schauder’s fixed point, the existence of solutions of fractional model (4)- (5)
shall be considered.

Theorem 3 Assuming that (L, M, N, O, P, V, Z) : [0, b]× R → R are continuous and that there is a
constants

(
LF1, LG1, LH1, LK1, LQ1, LU1, LW1

)
> 0

so that
∥F(t, SC)∥ ≤ LF1 (d + ∥SC∥) , ∥G(t, VC)∥ ≤ LG1 (d + ∥VC∥) , ∥H(t, AC)∥ ≤ LH1 (d + ∥AC∥) ,
∥K(t, JU)∥ ≤ LK1 (d + ∥JU∥) , ∥Q(t, JV)∥ ≤ LQ1 (d + ∥JV∥) , ∥U(t, R)∥ ≤ LU1 (d + ∥R∥) ,
∥W(t, CEV)∥ ≤ LW1 (d + ∥CEV∥) , with 0 < d ≤ 1 as an arbitrary number, it follows that (4)- (5) possesses
a minimum of one solution.

Proof From (22), it is clear that the operator η is continuous. Thus let {Sn+1
C

}∞, {Vn+1
C

}∞, {An+1
C

}∞,
{Jn+1

U
}∞, {Jn+1

V
}∞, {Rn+1}∞, {Cn+1

EV
}∞, be sequences so that Sn+1

C
→ Sn

C
, Vn+1

C
→ Vn

C
, An+1

C
→ An

C
,

Jn+1
U

→ Jn
U

, Jn+1
V

→ Jn
V

, Rn+1 → Rn, Cn+1
EV

→ Cn
EV

, in H1 ([0, b], R). Then for every 0 ≤ t ≤ S we get

∥∥∥ηSn+1
C

(t)− ηSn
C
(t)
∥∥∥ =

1
Γ(ψ)

∥∥∥∥∫ t

0
(t − ζ)ψ−1 F

(
ζ, Sn+1

C
(ζ)
)

dζ −

∫ t

0
(t − ζ)ψ−1 F (ζ, Sn

C
(ζ)) dζ

∥∥∥∥ ,

≤ 1
Γ(ψ)

∫ h

0
(t − ζ)ψ−1

∥∥∥F(ζ,n+1 (ζ))− F(ζ, Sn
C
(ζ))

∥∥∥ dζ,

≤ LF1Sψ

Γ(ψ + 1)

∥∥∥Sn+1
C

)− Sn
C

∥∥∥ ,

≤ LF1

(
Γ(1 − ψ) sin(πψ)Sψ

ψπ

)∥∥∥Sn+1
C

− Sn
C

∥∥∥
H1

, (23)

where
∥∥Sn+1

C
− Sn

C

∥∥
H

→ 0 as n → ∞.
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Following the method of solution, we have

∥∥∥ηVn+1
C

(t)− ηVn
C
(t)
∥∥∥ ≤ LG1

(
Γ(1 − ψ) sin(πψ)Sψ

ψπ

)∥∥∥Vn+1
C

− Vn
C

∥∥∥
H1

,∥∥∥ηAn+1
C

(t)− ηAn
C
(t)
∥∥∥ ≤ LH1

(
Γ(1 − ψ) sin(πψ)Sψ

ψπ

)∥∥∥An+1
C

− An
C

∥∥∥
H1

,∥∥∥η Jn+1
U

(t)− η Jn
U
(t)
∥∥∥ ≤ LK1

(
Γ(1 − ψ) sin(πψ)Tψ

ψπ

)∥∥∥Jn+1
U

− Jn
U

∥∥∥
H1

,∥∥∥η Jn+1
V

(t)− η Jn
V
(t)
∥∥∥ ≤ LQ1

(
Γ(1 − ψ) sin(πψ)Sψ

ψπ

)∥∥∥Jn+1
V

− Jn
V

∥∥∥
H1

,∥∥∥ηRn+1(t)− ηRn(t)
∥∥∥ ≤ LU1

(
Γ(1 − ψ) sin(πψ)Sψ

ψπ

)∥∥∥Rn+1 − Rn
∥∥∥

H1
,∥∥∥ηCn+1

EV
(t)− ηCn

EV
(t)
∥∥∥ ≤ LW1

(
Γ(1 − ψ) sin(πψ)Sψ

ψπ

)∥∥∥Cn+1
EV

− Cn
EV

∥∥∥
H1

,

where
∥∥Vn+1

C
− Vn

C

∥∥
H1 → 0,

∥∥An+1
C

− An
C

∥∥
H∗1 → 0,

∥∥Jn+1
U

− Jn
U

∥∥
H1 → 0,

∥∥Jn+1
V

− Jn
V

∥∥
H1 → 0,∥∥Rm+1 − Rn

∥∥
H1 → 0,

∥∥Cn+1
EV

− Cn
EV

∥∥
H1 → 0, Hence, the operator η is continuous. ■

Next we show that the operator η is a one-to-one bounded set of H1 ([0, b], R). Therefore, for every
SC ∈ MSc, VC ∈ MVc, AC ∈ MAc, JU ∈ MJU

, JV ∈ MJV
, R ∈ MR, CEV ∈ MCEV

, also for y > 0, there
is a corresponding value z > 0 where ∥ηSC∥ ≤ z, ∥ηSC∥ ≤ z, ∥ηVC∥ ≤ z, ∥ηAC∥ ≤ z, ∥η JU∥ ≤ z,
∥η JV∥ ≤ z, ∥ηR∥ ≤ z, ∥ηCEV∥ ≤ z. The subset of Banach space of all continuous functions on the
interval 0 ≤ t ≤ S are given as follows

BS =
{

SC ∈ H1 ([0, b], R) : ∥SC∥ ≤ y
}

, MVc =
{

V ∈ H1 ([0, b], R) : ∥VC∥ ≤ y
}

,

MAc =
{

AC ∈ H1 ([0, b], R) : ∥AC∥ ≤ y
}

, MJU
=

{
JU ∈ H1 ([0, b], R) : ∥JU∥ ≤ y

}
,

MJV
=

{
JV ∈ H1 ([0, b], R) : ∥JV∥ ≤ y

}
, MR =

{
R ∈ H1 ([0, b], R) : ∥R∥ ≤ y

}
,

BCEV
=

{
CEV ∈ H1 ([0, b], R) : ∥CEV∥ ≤ y

}
.

Thus for any 0 ≤ t ≤ S,

∥ηSC∥ ≤ ∥Sc(0)∥+
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1 ∥F(ζ, SC(ζ))∥ dζ

≤ ∥S(0)∥+ ∥F(ζ, SC(ζ))∥
Γ(ψ)

∫ t

0
(t − ζ)ψ−1dζ

≤ ∥S(0)∥+ LF1 (d + ∥SD∥)
(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)
≤ ∥S(0)∥+ LF1 (d + y)

(
Γ(1 − ψ) sin(πψ)Sψ

ψπ

)
= z.
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Applying the same method of solution, we have the following set of solutions.

∥ηVC∥ ≤ ∥V(0)∥+ LG1 (d + y)
(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)
,

∥ηAC∥ ≤ ∥A(0)∥+ LH1 (d + y)
(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)
,

∥η JU∥ ≤ ∥JU(0)∥+ LK1 (d + y)
(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)
,

∥η JV∥ ≤ ∥JV(0)∥+ LQ1 (d + y)
(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)
,

∥ηR∥ ≤ ∥R(0)∥+ LU1 (d + y)
(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)
,

∥ηCEV∥ ≤ ∥CEV(0)∥+ LW1 (d + y)
(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)
.

Let Φ maps bounded set together with equal continuous sets in H1 ([0, b], R). Assuming that
0 ≤ t1 ≤ t2 ≤ S, SC ∈ MSc, VC ∈ MVc, AC ∈ MAc, JU ∈ MJU

, JV ∈ MJV
, R∈MR, CEV ∈ MCEV

, with
t1, t2 ∈ [0, b], it follows that

∥ηSC(t1)− ηSC(t2)∥ =
1

Γ(ψ)

∥∥∥∥∫ t1

0
(t1 − ζ)ψ−1F(ζ, SC(ζ))−

∫ t2

0
(t2 − ζ)ψ−1F(ζ, SC(ζ))

∥∥∥∥ dζ

≤ 1
Γ(ψ)

∥∥∥∥∫ t1

0

(
(t1 − ζ)ψ−1 − (t2 − ζ)ψ−1

)
F(ζ, SC(ζ))dζ

∥∥∥∥
+

1
Γ(ψ)

∥∥∥∥∫ t2

t1

(t2 − ζ)ψ−1F(ζ, SC(ζ))dζ

∥∥∥∥
≤ LF1 (d + y)

Γ(ψ)

∥∥∥∥∫ t1

0

(
(t1 − ζ)ψ−1 − (t2 − ζ)ψ−1

)
dζ +

∫ t2

t1

(t2 − ζ)ψ−1dζ

∥∥∥∥
≤

(
LF1 (d + y) Γ(1 − ψ) sin(πψ)

ψπ

)(
tψ
1 − tψ

2 + 2(t2 − t1)
ψ
)

.

Applying the same method of solution, we have the following

∥ηVC(t1)− ηVC(t2)∥ ≤
(

LG1 (d + y) Γ(1 − ψ) sin(πψ)

ψπ

)(
tψ
1 − tψ

2 + 2(t2 − t1)
ψ
)

,

∥ηAC(t1)− ηAC(t2)∥ ≤
(

LH1 (d + y) Γ(1 − ψ) sin(πψ)

ψπ

)(
tψ
1 − tψ

2 + 2(t2 − t1)
ψ
)

,

∥η JU(t1)− η JU(t2)∥ ≤
(

LK1 (d + y) Γ(1 − ψ) sin(πψ)

ψπ

)(
tψ
1 − tψ

2 + 2(t2 − t1)
ψ
)

,

∥η JV(t1)− η JV(t2)∥ ≤
(

LQ1 (d + y) Γ(1 − ψ) sin(πψ)

ψπ

)(
tψ
1 − tψ

2 + 2(t2 − t1)
ψ
)

,∥∥∥ηR(t1)− ηR(t2)
∥∥∥ ≤

(
LU1 (d + y) Γ(1 − ψ) sin(πψ)

ψπ

)(
tψ
1 − tψ

2 + 2(t2 − t1)
ψ
)

,

∥ηCEV(t1)− ηCEV(t2)∥ ≤
(

LW1 (d + y) Γ(1 − ψ) sin(πψ)

ψπ

)(
tψ
1 − tψ

2 + 2(t2 − t1)
ψ
)

.
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As t1 approaches t2, the right-hand side of the inequalities approaches zero. The operator η is
proven to be a continuous function using the Arzola-Ascoli theorem. Hitherto, the fact that η

maps bounded sets together with another set has been shown. In addition to that, the operator
is also continuous. Lastly, we would prove that R(η) = {(SC, VC, AC, JU, JV R, CEV) ∈ H1 ([0, b], R) :
(SC, VC, AC, JU, JV, R, CEV) = Λ (SC, VC, AC, JU, JV, R, CEV)} is bounded for some Λ ∈ (0, 1) using Lemma
(1). Assuming that (SC, VC, AC, JU, JV, R, CEV, ) ∈ R(η), so that
(SC, VC, AC, JU, JV, R, CEV) = Λη (SC, VC, AC, JU, JV, R, CEV), it follows that for every t ∈ [0, b] gives

∥SC(t)∥ ≤ SC(0) +
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1 ∥F(ζ, SC(ζ))∥ dζ

≤ SC(0) +
LF1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1 (d + ∥SC(ζ)∥) dζ

≤ SC(0) +
cLF1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1 dζ +

LF1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1 ∥SC(ζ)∥ dζ (24)

≤ SC(0) +
(

LF1
Γ(1 − ψ) sin(πψ)Sψ

ψπ

)
+

(
LF1Γ(1 − ψ) sin(πψ)

π

) ∫ t

0
(t − ζ)ψ−1 ∥SC(ζ)∥ dζ

≤
(

SC(0) +
LF1Γ(1 − ψ) sin(πψ)Sψ

ψπ
Eψ

(
LF1Tψ

))
< ∞.

As already proven, R(η) is bounded and using Schauder’s fixed point theorem, the operator η has
a fixed point and hence the solution of the fractional model.

Basic reproduction number of the model

To get the disease-free equilibrium (DFE) of the model, the right-hand side of the equations of the
model (4) is set to zero which is as follows,

ξ0 = (SC(0), VC(0), AC(0), JU(0), JV(0), R(0), CEV(0)) =
( Ω

δ + µ
,

δΩ
µ (δ + µ)

, 0, 0, 0, 0, 0
)

. (25)

To get the linear stability of the disease-free equilibrium ξ0, we apply the method of the next
generation operator on the model (4). The matrix F (of new infection) and the matrix V (of the
transfer of infections in and out of the disease compartments), respectively, are as follows

F =


pβωQH

NH

pβQH
NH

pβϱV QH
NH

pϑQH
(1−p)βωSc

NH

(1−p)βSc
NH

(1−p)βϱVSc
NH

(1 − p)ϑSc
(1− f )(1−ξ)βωVc

NH

(1− f )(1−ξ)βVc
NH

(1− f )(1−ξ)βϱVVc
NH

(1 − f )(1 − ξ)ϑVc

0 0 0 0

,

with QH = Sc + f (1 − ξ)Vc,

V =


γA + µ 0 0 0

0 γIU + dJU + µ 0 0
0 0 γIV + dJV + µ 0

−χ1 −χ2 −χ3 µEV

.

Therefore, the basic reproduction number of the fractional order vaccination model for COVID-
19 incorporating environmental transmission denoted by R0 = max{R0H,R0EV}, where R0H is
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human to human transmission, and R0EV is environment to human transmission, respectively. The
associated reproduction numbers are given by

R0H =
βω (θ1ηAQH + (1 − p)S∗

C
+ V∗

C
ηv)

N∗
HG1G2G3

,

and

R0EV =
β (χ1 + (1 − p)S∗

C
χ2 + V∗

C
χ3)

µEV

,

where,

G1 = γA +µ, G2 = γIU + dJU +µ, G3 = γJV + dJV +µ, QH = S∗
C
+ f (1 − ξ)V∗

C
, VC = (1 − f ) (1 − ξ)V∗

C
.

Local asymptomatic stability of the disease-free equilibrium

Theorem 4 The condition for the DFE, N0 of the model (4) to be locally asymptotically stable (LAS) is that
the reproduction number must be less than 1, i.e Rc < 1, and unstable when the reproduction number is
greater than 1, i.e Rc > 1.

Proof To get the local stability of the model (4), we carried out the Jacobian matrix of the system
(4) and computed it using the value gotten at the disease-free equilibrium given as follows:



−(µ + δ) 0 −βωS∗
C

N∗
H

−βS∗
C

N∗
H

−βϱvS∗
C

N∗
H

0 ϑS∗
C

δ −µ
−(1−ξ)βωV∗

C

N∗
H

−(1−ξ)βV∗
C

N∗
H

−(1−ξ)βϱvV∗
C

N∗
H

0 (1 − ξ)ϑV∗
C

0 0 pβωS∗
C+ f )(1−ξ)βωV∗

C

N∗
H

− G1
pβS∗

C+ f (1−ξ)βV∗
C

N∗
H

pβϱvS∗
C+ f (1−ξ)βϱVV∗

C

N∗
H

0 pϑS∗
C
+ f (1 − ξ)ϑV∗

C

0 0 (1−p)βωS∗
C

N∗
H

(1−p)βS∗
C

N∗
H

− G2
(1−p)βϱvS∗

C

N∗
H

0 (1 − p)ϑS∗
C

0 0 (1− f )(1−ξ)βωV∗
C

N∗
H

(1− f )(1−ξ)βV∗
C

N∗
H

(1− f )(1−ξ)βϱvV∗
C

N∗
H

− G3 0 (1 − f )(1 − ξ)ϑV∗
C

0 0 γA γJU γJV −µ 0
0 0 χ1 χ2 χ3 0 −µEV


.

The first four eigenvalues are λ1 = −(µ + δ), λ2 = −µ(twice), λ3 = −µEV, while the remaining
three eigenvalues are obtained from the solutions of the equations below

(NH + (−1 + p)SH β1)− ((λ + G2)VH β1ηv(1 − R0P))− ((λ + G2)(λ + G3)QH β1ηAθ1(1 − R0C)) = 0. (26)

Following the method of the Routh-Hurwitz, the above equations will possess roots with negative
real parts ⇐⇒ R0H < 1 and R0EV < 1 respectively. Hence, the DFE J(N0) is locally asymptotically
stable if R0 = max {R0H,R0EV} < 1.
Epidemiologically, the above result implies that the prevalence of COVID-19 can be eradicated
from the population provided R0 < 1 and if the initial sizes of the population of the model are in
the region of attraction of the DFE.

Generalized Ulam-Hyers-Rassias stability

In this section, the approach by Liu [30] shall be applied to prove that the fractional model is
generalized UHR stable. Following [30], the definition below holds:

Definition 6 The fractional model (4)- (5) is generalized Ulam-Hyers-Rassias (UHR) stable with regards
to Υ(t) ∈ H1([0, b], R) provided there is a real value Σψ > 0 so that ϵ > 0 and for every solution
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(SC, VC, AC, JU, JV, R, CEV, ) ∈ H1([0, b], R) of the inequalities below∣∣∣Dψ
t SC(t)− F(t, SC(t))

∣∣∣ ≤ Υ(t),
∣∣∣Dψ

t VC(t)− G(t, VC(t))
∣∣∣ ≤ Υ(t),

∣∣∣Dψ
t AC(t)− H(t, AC(t))

∣∣∣ ≤ Υ(t),

∣∣∣Dψ
t JU(t)− K(t, JU(t))

∣∣∣ ≤ Υ(t),
∣∣∣Dψ

t JV(t)− Q(t, JV(t))
∣∣∣ ≤ Υ(t),

∣∣∣Dψ
t R(t)− U(t, R(t))

∣∣∣ ≤ Υ(t),

∣∣∣Dψ
t CEV(t)−W(t, CEV(t))

∣∣∣ ≤ Υ(t),

there is a solution (S̄C, V̄C, ĀC, J̄U, J̄V, R̄, ,̄C̄EV) ∈ H1([0, b], R) of the fractional model (4)-(5) with∣∣SC(t)− S̄C(t)
∣∣ ≤ ΣψΥ(t),

∣∣VC(t)− V̄C(t)
∣∣ ≤ ΣψΥ(t),

∣∣AC(t)− ĀC(t)
∣∣ ≤ ΣψΥ(t),

∣∣JU(t)− J̄U(t)
∣∣ ≤ ΣψΥ(t),

∣∣JV(t)− J̄V(t)
∣∣ ≤ ΣψΥ(t),

∣∣R(t)− R̄(t)
∣∣ ≤ ΣψΥ(t),

∣∣CEV(t)− C̄EV(t)
∣∣ ≤ ΣψΥ(t).

Theorem 5 The fractional model (4)- (5) is generalized Ulam-Hyers-Rassias stable with regards to Υ ∈
H1([0, b], R) if

(
LF, LG, LH, LK, LQ, LU , LW

)
Sψ < 1.

Proof From definition (6), let Υ stand for the non-decreasing function of t, then there is ϵ > 0 so
that ∫ t

0
(t − ζ)ψ−1Υ(ζ)dζ ≤ ϵΥ(t),

for every t ∈ [0, b]. The functions F, G, H, K, Q, U, W according to prove is said to be continuous
and

(LF, LG, LH, LK, LQ, LU , LW) > 0

meets the Lipschitz condition as seen in the previous part. From Theorem (2), the fractional model
(4)- (5) has the unique solution

S̄C(t) = SC(0) +
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1F(ζ, S̄C(ζ))dζ.

Integrating the inequalities in definition (6) we get∣∣∣∣SC(t)− SC(0)−
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1F(ζ, SC(ζ))dζ

∣∣∣∣ ≤ 1
Γ(ψ)

∫ t

0
(t − ζ)ψ−1Υ(ζ)dζ

≤ ϵΥ(t)Γ(1 − ψ) sin(πψ)

π
. (27)
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Using Lemma (1) and Eq. (27), we have the following

∣∣SC(t)− S̄C(t)
∣∣ ≤

∣∣∣∣SC(t)−
(

SC(0) +
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1F(ζ, S̄C(ζ))dζ

)∣∣∣∣
≤

∣∣∣∣SC(t)− SC(0)−
(

1
Γ(ψ)

∫ t

0
(t − ζ)ψ−1F(ζ, S̄C(ζ))dζ +

1
Γ(ψ)

∫ t

0
(t − ζ)ψ−1F(ζ, SC(ζ))dζ

−
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1F(ζ, SC(ζ))dζ

)∣∣∣∣
≤

∣∣∣∣SC(t)− SC(0)−
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1F(ζ, SC(ζ))dζ

∣∣∣∣
+

1
Γ(ψ)

∫ t

0
(t − ζ)ψ−1 ∣∣F(ζ, S(ζ))− F(ζ, S̄C(ζ))

∣∣ dζ

≤ ϵΥ(t)Γ(1 − ψ) sin(πψ)

π
+

LFΓ(1 − ψ) sin(πψ)

π

∫ t

0
(t − ζ)ψ−1 ∣∣SC(ζ)− S̄C(ζ)

∣∣ dζ

≤ ϵΥ(t)Γ(1 − ψ) sin(πψ)

π
Eψ

(
LFSψ

)
.

By setting Σψ = ϵΓ(1−ψ) sin(πψ)
π Eψ

(
LFSψ

)
we have∣∣SC(t)− S̄C(t)
∣∣ ≤ ΣψΥ(t), t ∈ [0, b].

Using the method of solution, we have the following∣∣VC(t)− V̄C(t)
∣∣ ≤ ΣψΥ(t),

∣∣AC(t)− ĀC(t)
∣∣ ≤ ΣψΥ(t),

∣∣JU(t)− J̄U(t)
∣∣ ≤ ΣψΥ(t),

∣∣JV(t)− J̄V(t)
∣∣ ≤ ΣψΥ(t),

∣∣R(t)− R̄(t)
∣∣ ≤ ΣψΥ(t),

∣∣CEV(t)− C̄EV(t)
∣∣ ≤ ΣψΥ(t),

for every t ∈ [0, b]. Therefore, it is concluded that the fractional model is generalized Ulam-Hyers-
Rassias stable with regards to Υ(t). ■

4 Numerical scheme and simulations

On account of the many benefits of the fractional predictor-corrector technique, it is applied in
this section to numerically solve the proposed model. The numerical scheme is derived from
the Adams-Bashforth linear multi-step method in the Caputo sense [34] The numerical method’s
convergence was also a topic of discussion. The entire model (4)-(5) is simulated using the values of
the parameters listed in our table 2 in accordance with the demographic and epidemiological data
pertinent to the dynamics of COVID-19 incorporating environmental transmission in Nigeria. The
total population of Nigeria is roughly 206,139,587, and the average lifespan in Nigeria is 54.69 years
[31]. we have that µ = 1

54.69 ≈ 0.0183 year−1 and Ω = µ × 200, 000, 000 ≈ 365, 6976 year−1.
The initial conditions are put as listed as: SC(0) = 200, 000, 000, VC(0) = 5000000, AC(0) =

5000, JU(0) = 2000, JV(0) = 2000, R(0) = 2000, CEV(0) = 2500.

Let tk = kh, k = 0, 1, 2, . . . , m be the uniform grid points with some integer m and h = T/m, which
is the grid step size. As a result, (4) reduces to the fractional version of the one-step Adam-Moulton
method (Corrector formula) which is obtained by employing piece-wise interpolation with nodes
and knots located at tj, j = 0, 1, 2, . . . , k + 1,



Atede et al. | 99

SC(tr+1)− SC(0) =
gψ

Γ(ψ + 2)

( r∑
i=0

ui,r+1F (ti, SC(ti)) + F (tr+1, Sq
C
(tr+1))

)
,

VC(tr+1)− VC(0) =
gψ

Γ(ψ + 2)

( r∑
i=0

ui,r+1G (ti, VC(ti)) + G (tr+1, Vq
C
(tr+1))

)
,

AC(tr+1)− AC(0) =
gψ

Γ(ψ + 2)

( r∑
i=0

ui,r+1H (ti, AC(ti)) + H (tr+1, Aq
C
(tr+1))

)
,

JU(tr+1)− JU(0) =
gψ

Γ(ψ + 2)

( r∑
i=0

ui,r+1K (ti, JU(ti)) + K (tr+1, Jq
U
(tr+1))

)
, (28)

JV(tr+1)− JV(0) =
gψ

Γ(ψ + 2)

( r∑
i=0

ui,r+1Q (ti, JV(ti)) + Q (tr+1, Jq
U
(tr+1))

)
,

R(tr+1)− R(0) =
gψ

Γ(ψ + 2)

( r∑
i=0

ui,r+1U (ti, R(ti)) + U (tr+1, Rq(tr+1))

)
,

CEV(tr+1)− CEV(0) =
gψ

Γ(ψ + 2)

( r∑
i=0

ui,r+1V (ti, CEV(ti)) + W (tr+1, Cq
EV
(tr+1))

)
,

where the weight ui,r+1 =


rψ+1 − (r − ψ)(r + 1)ψ, i = 0.

(r − i + 2)ψ+1 + (r − i)ψ+1 − 2 (r − i + 1)ψ+1 , 1 ≤ i ≤ r.

1, i = r + 1.
The predictor formula motivated by the well-known one-step Adam-Bashforth method is given by

Sq
C (tr+1)− SC(0) =

1
Γ (ψ)

r∑
i=0

vi,r+1F (ti, SC(ti)) ,

Vq
C
(tr+1)− VC(0) =

1
Γ (ψ)

r∑
i=0

vi,r+1G (ti, VC(ti)) ,

Aq
C
(tr+1)− AC(0) =

1
Γ (ψ)

r∑
i=0

vi,r+1H (ti, AC(ti)) , (29)

Jq
U
(tr+1)− JU(0) =

1
Γ (ψ)

r∑
i=0

vi,r+1K (ti, JU(ti)) ,

Jq
V
(tr+1)− JV(0) =

1
Γ (ψ)

r∑
i=0

vi,r+1Q (ti, JV(ti)) ,

Rq (tr+1)− R(0) =
1

Γ (ψ)

r∑
i=0

vi,r+1U (ti, R(ti)) ,

Cq
EV (tr+1)− CEV(0) =

1
Γ (ψ)

r∑
i=0

vi,r+1W (ti, CEV(ti)) ,
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where the weight is given by

vi,r+1 = ψ−1gψ
(
(r − i + 1)ψ − (r − i)ψ

)
.

Model fitting

The genetic algorithm method was used to fit the model in accordance with [35], which specifies
the values for the parameters under investigation. The above investigation was carried out using
the fmincon function in the optimization toolbox of MATLAB. Figure 1 presents the fitting of the
model 4. It was applied to the weekly total number of COVID-19 cases that had been confirmed in
Nigeria between April 1, 2021, and June 10, 2021. The figure demonstrates that the model behaves
very similarly to Nigeria’s COVID-19 data. The table provides a rough estimate of additional
fitting-derived parameters.1.
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Figure 1. Fitting the model to the cumulative number of confirmed COVID-19 cases in Nigeria. All other
parameters are as in Table 1

Impact of different values of fractional order on the model classes

Figure 1 presents simulations of the susceptible class at various fractional orders. During the
first 35 days of the simulation, it is observed that the total population grows as the fractional
order decreases and that the trend reverses as the fractional order increases. The simulations of
the vaccinated class at various fractional orders are shown in Figure 2. A comparative pattern is
noticed; The total population rises while the fractional order decreases during the first quarter of
the simulation period (35 days). As the fractional grows, the total population then shifts in the
opposite direction. The simulations for the Asymptomatic class are shown in Figure 3; For the
first quarter of the simulation period, it is observed that the total population does not increase or
decrease when the fractional order decreases. By the by, accordingly, it increments and diminishes
eventually as the fractional order diminishes. The simulations for the unvaccinated asymptomatic
class are shown in Figure 4; it shows that for the initial 30 days of the simulations time frame,
a decline in the fractional order value leaves the population unaltered as there was neither an
increment nor a diminishing in the complete population. As the fractional order decreased, there
was an increase in the total population.
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Figure 2. Simulations of the Susceptible individuals at different fractional order values. All other parameters as
in Table 1
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Figure 3. Simulations of the Vaccinated individuals at different fractional order values. Using additional
parameters from Table 1
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Figure 4. Simulations of the Asymptomatic individuals at different fractional order values. Using additional
parameters from Table 1
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Figure 5 presents the simulations of the vaccinated asymptomatic class; During the first forty
days of the simulation, it is observed that the fractional order decreases while the total population
increases slightly; After that, the fractional order decreases, resulting in a significant increase
in the total population. The simulations for the Recovered class are shown in Figure 6; for the
first 40 days of the simulations, it is observed that the total population does not change as the
fractional order decreases; rather, it does not increase or decrease. Nonetheless, following a decline
in the fractional order, there was an expansion in the complete population. The simulations of
the environment’s COVID-19 concentration are shown in Figure 7; the simulations demonstrate
that as the fractional order decreased, neither an increase nor a decrease in the total population
occurred; as a result, the total population increased as the fractional order decreased.
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Figure 5. Simulations of the unvaccinated susceptible individuals at different fractional order values. Using
additional parameters from Table 1
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Figure 6. Simulations of the vaccinated susceptible individuals at different fractional order values. Using
additional parameters from Table 1
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Figure 7. Simulations of the Recovered individuals at different fractional order values. Using additional
parameters from Table 1
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Figure 8. Simulations of the concentration of COVID-19 in the environment at different fractional order values.
Using additional parameters from Table 1
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Figure 9. Simulation of the susceptible individual in the presence and absence of environmental transmission of
COVID-19. Here, ψ = 0.65. Using additional parameters from Table 1
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Figure 10. Simulation of the vaccinated individual in the presence and absence of environmental transmission of
COVID-19. Here, ψ = 0.65. Using additional parameters from Table 1
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Figure 11. Simulation of the asymptomatic susceptible individual in the presence and absence of environmental
transmission of COVID-19. Here, ψ = 0.65. Using additional parameters from table 1
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Figure 12. Simulation of the unvaccinated susceptible individual in the presence and absence of environmental
transmission of COVID-19. Here, ψ = 0.65. Using additional parameters from Table 1
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Figure 13. Simulation of the vaccinated susceptible individual in the presence and absence of environmental
transmission of COVID-19. Here, ψ = 0.65. Using additional parameters from Table 1
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Figure 14. Simulation of vaccinated Recovered individual in the presence and absence of environmental
transmission of COVID-19. Here, ψ = 0.65. Using additional parameters from Table 1
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Figure 15. Simulation of concentration of COVID-19 in the environment in the presence and absence of
environmental transmission of COVID-19. Here, ψ = 0.65. Using additional parameters from Table 1
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Impact of environmental transmission on the model classes

Figure 8 presents the simulations of the susceptible individuals in the presence and absence of
environmental transmission of Coronavirus. It has been carefully observed that when there is no
environmental transmission, the population grows because there are no infected people and that
is because the population is made up of people who are susceptible. However, the number of
asymptomatic individuals exposed to COVID-19 rises as environmental transmission decreases
the population.
In Figure 9, the simulations of the vaccinated individuals in the presence and absence of environ-
mental transmission are introduced. When there is no environmental transmission, the population
as a whole grows because there is no infection. On the other hand, when there is environmental
transmission, the population as a whole shrinks dramatically, leading to an increase in the number
of people who are asymptomatic after coming into effective contact with the infected environment.
The simulations of the asymptomatic individuals in the presence and absence of environmental
transmission are shown in Figure 10.
The shortfall of environmental transmission shows no impact on the absolute population for
the initial 40 days of the simulations time frame yet somewhat increments after the primary
period, this is on the grounds that the class is as of now an infected class that shows no side
effects. The infection grows rather than decreases as a result of environmental transmission; For
the first quarter of the simulation, the presence of environmental transmission has no effect on
asymptomatic individuals; however, after the first simulation period, the number of symptomatic
individuals rises.
In Figure 11, the simulations of the unvaccinated asymptomatic individuals in the presence and
absence of environmental transmission are introduced; at the point when there is no environmen-
tal transmission, for the principal quarter of the simulations time frame, the people in the class
neither increments nor diminishes however marginally expanded after the primary period, this is
on the grounds that it is now an infected class, so the shortfall of environmental transmission does
not influence the class, yet when there is an environmental transmission, the class stay unaltered
for the main quarter of the reproductions time frame yet increments after the primary time of the
simulations.
The simulations of the vaccinated asymptomatic individuals in the presence and absence of en-
vironmental transmission are shown in Figure 12; at the point when there is no environmental
transmission, it somewhat builds the quantity of the asymptomatic individual, yet when there is an
environmental transmission, we have a larger number of asymptomatic people. The simulations
of the Recovered individuals with and without environmental transmission are shown in Figure
13.
The absence of environmental transmission is observed to have no effect on the class. However,
after 20 days of simulation, there are more asymptomatic individuals in the presence of environ-
mental transmission. In Figure 14, the simulations of the concentration of Coronavirus in the
environment are introduced. It is observed that when there is no environmental transmission, the
class stay unaltered for the initial 20 days of the simulations time frame. At the point when there
is environmental transmission, the quantity of the asymptomatic people fundamentally expanded
following 20 days.

5 Conclusion

The fractional derivative was used to consider and analyze a fractional-order vaccination model
for COVID-19 incorporating environmental transmission. The Mittag-Leffler function is used
to demonstrate the solutions’ positivity and boundedness. The existence and uniqueness of the
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model solutions are additionally shown utilizing Banach and Schauder’s fixed point theorem. In
addition, we demonstrate the Ulam-Hyers-Rassias stability of the fractional-order model. For
the locally asymptotically stable system, it was demonstrated that the reproduction number was
lower than unity. Numerical simulations were likewise viewed as utilizing information pertinent
to Coronavirus cases for Nigeria and fitted to the week-by-week combined number of affirmed
cases from April 1, 2021, to June 10, 2021, to look at the effect of various fractional order values on
the model classes and the effect of environmental transmission on the model classes.
The highlights of the simulations are as follows:
(i) As depicted in Figure 2, the fractional-order value decreases with increasing model class
population.
(ii) There is a larger overall population when there is no environmental transmission. The number
of people who are asymptomatic rises when there is environmental transmission, as shown in
Figure 9.
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