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Abstract
This study introduces several updated results for the piecewise plant-pathogen-herbivore interactions
model with singular-type and nonsingular fractional-order derivatives. A piecewise fractional model
has developed to describe the interactions between plants, disease, (insect) herbivores, and their
natural enemies. We derive essential findings for the aforementioned problem, specifically regarding
the existence and uniqueness of the solution, as well as various forms of Ulam Hyers (U-H) type
stability. The necessary results were obtained by utilizing fixed-point theorems established by Schauder
and Banach. Additionally, the U-H stabilities were determined based on fundamental principles of
nonlinear analysis. To implement the model as an approximate piecewise solution, the Newton
Polynomial approximate solution technique is employed. The applicability of the model was validated
through numerical simulations both in fractional as well as piecewise fractional format. The motivation
of our article is that we have converted the integer order problem to a global piecewise and fractional
order model in the sense of Caputo and Atangana-Baleanu operators and investigate it for existence,
uniqueness of solution, Stability of solution and approximate solution along with numerical simulation
for the validity of our obtained scheme.

Keywords: Crossover behavior; piecewise global fractional derivatives; Newton interpolation formula;
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1 Introduction

The interactions between plants, herbivores, and pathogens in nature are complex and multifaceted.
According to a reference [1], approximately 50% of the estimated 6 million species of insects are
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herbivorous. On the other hand, plant pathogenic microbes pose significant threats to plants
[2], but their total number has not been accurately estimated. Plants have evolved sophisticated
defense mechanisms to detect and respond to multiple attacks by herbivores and pathogens
[3]. These mechanisms can be broadly classified into two types: physical and chemical defenses.
Regarding chemical defense, plants have the ability to release volatile organic compounds (VOCs)
that can attract natural enemies of herbivores. This process can ultimately help to decrease
herbivore pressure [4, 5]. Predatory mites and parasitic wasps are among the natural enemies of
herbivores that are attracted by volatile organic compounds (VOCs) released by plants [6].

A good example of this is when lima bean and apple plants are attacked by spider mites. In
response to this damage, the plants release volatile compounds that can attract predatory mites to
help control the spider mite population. Similarly, several plant species, including cucumber, corn,
and cotton, release herbivore-induced plant volatiles (HIPVs) when attacked by herbivores. The
use of HIPVs can help control pests and potentially reduce the need for artificial pesticides. Plants
have the ability to release HIPVs, which are lipophilic liquids with high vapor pressures that can be
emitted from various parts of a plant, such as its leaves, flowers, and fruits [7]. Through the release
of HIPVs, plants may help protect forestry and agriculture by potentially attracting predatory
arthropods or repelling herbivores, ultimately promoting plant fitness [8–10]. In addition, the
release of volatile compounds can also help damaged plants by attracting natural enemies of
herbivores [11]. Studies focusing on the interactions between plants and herbivores, as well as
plants and pathogens, have been extensively researched. The influence of VOCs in mediating
tri-trophic interactions, which occur when plants are attacked by both herbivores and pathogens,
has yet to be fully understood. In a recent study by Liu et al. [12], they examined a model
that involved plants, herbivores, and natural enemies of herbivores in the context of tri-trophic
interactions, but did not take into account the potential pathogenic effects on the plant population.
The study indicated that an increase in the strength of plant-induced volatile attraction to natural
enemies resulted in a greater fluctuation amplitude of plant biomass and herbivore population.

Previous studies have primarily investigated the interactions between plants and either herbivores
or pathogens. However, the extent to which VOCs mediate tri-trophic interactions when plants
are attacked by both herbivores and pathogens remains uncertain. In a recent study by Liu
et al. [12], they investigated tri-trophic interactions involving plants, herbivores, and natural
enemies of herbivores without considering the pathogenic effects on plant populations. They
found that an increase in the attraction strength of plant-induced volatiles to natural enemies
leads to high fluctuation amplitudes of plant biomass and herbivore populations. Based on the
study by Fergola and Wang [13], when the attack strength of natural enemies reaches a certain
level, the fluctuation amplitude of plant biomass and herbivore population decreases, and the
plant biomass tends to approach its environmental carrying capacity. They enhanced Liu et al.’s
model [12] by considering the impact of time delay. Their research indicated that for Volterra-type
interactions, chemical attractions do not affect the threshold value for the persistence of herbivore
and carnivore populations. In addition, their observations showed that the presence of carnivores
could lead to a decrease in herbivore density while increasing plant density. Moreover, the model
demonstrated a fold bifurcation when the predation process follows Leslie-type interactions.

Based on the literature discussed above, we investigated a model for plants [14] using the frame-
work of piecewise derivative and integral operators. The model consists of four compartments,
including the susceptible plant compartment (S), the infected plant compartment (I), and the
herbivore (Y) and natural enemy (Z) populations. The system of ordinary differential equations
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can be expressed as follows:

dS
dt

= S
[
r
(
1 −

S
k
)
−

βI
1 + αS

− p1Y
]
,

dI
dt

= I
(

βS
1 + αS

− ω

)
,

dY
dt

= Y
(
− d1 + C1p1S − p2Z

)
,

dZ
dt

= −Y2Z + C2p2YZ + µ.

(1)

The parameters used in the above system with details are presented in Table 1.

Table 1. Details of the used parameters in model (1).

Notations Details
r The growth rate of plant
k The rate of environmental carrying capacity
β The rate of transmission of the disease
α Rate of the inhibition effect
ω Death rate of the infected plants
d1 Herbivore death rate

c1, c2 The rates of conversion
µ The rate herbivore natural enemy

p1, p2 The rates of predation for plants

Fractional derivatives are known for their ability to incorporate memory and genetic effects,
making them essential for studying various real-world dynamic problems. The application
of fractional-order derivatives in mathematical models of infectious disease spread makes the
situation more realistic and plausible. The conventional fractional calculus method involves
long memory effects, which can lead to complications when dealing with long-term calculation
problems. Moreover, power-law long memory is represented using classical fractional calculus
mathematical tools, which consist of fractional order derivatives and integrals. Several researchers
have presented different fractional operators and investigated mathematical modeling of linear
and nonlinear problems to discuss real-world phenomena [15–18]. It is worth noting that when
modeling different memory phenomena, the memory process is generally split into two stages.
The memory process is typically divided into two stages, one involving short-term memory with
permanent retention, while the other is governed by a simple fractional derivative model [19].
To tackle the issue of short-term memory, it is necessary to employ equations with piecewise
fractional-order derivatives. This approach can enhance performance and efficiency, enabling
clearer explanations of physical phenomena (see [20] for further information). Moreover, the idea
of using piecewise derivatives of fractional orders has recently been explored in several studies.
The concept of piecewise fractional differential equations has been employed by researchers in
recent studies, after Atangana and Araz presented in [21], to explore various dynamical systems
[22–24]. Such operators have proven useful in solving problems that exhibit crossover behavior
and are gaining popularity among researchers. For instance, in [25], the CAT-T cells-SARS-2
disease model was investigated using the concept of piecewise fractional differential equations.
Similarly, a Covid-19 model was studied using this approach in [26]. Additionally, authors
in [27] examined the third wave of the Covid-19 outbreak in Türkiye, Spain, and Czechia by
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employing piecewise differential and integral operators in their model. In addition, the concept
of piecewise operators is being utilized by several authors to obtain numerical results for the
food web model (see Ref. [28]). Numerous works have been documented by several researchers
regarding piecewise differential and integral operators with various operators [29–33].
As for as the contribution of our article is concerned, we have converted the integer order problem
to a global piecewise and fractional order model in the sense of Caputo and Atangana Baleanu
operators (PCABC). As fractional operators are generalized because they have an extra degree
of freedom and choices. Therefore, we checked the dynamics of different fractional orders lying
between 0 and 1, and compared them with the integer order. On small fractional orders, stability is
achieved quickly. The piecewise fractional model is investigated for the existence and uniqueness
of the solution in the sense of fractional Caputo and Atangana Baleanu operator having a kernel
of non-singularity in the form of the exponential function. The approximate or semi-analytical
solution is obtained by the technique of piecewise fractional Caputo and ABC derivative. Taking
different fractional orders we have simulated the obtained scheme for the first four terms. We
have also compared the fractional dynamics with the integer order dynamics. All the quantities of
the proposed problem are converging to their equilibrium points showing spectrum dynamics
with the removal of singularity as well as the crossover or abrupt dynamics.
Motivated by the above-mentioned work, we study the system taken from [14] in the sense of
piecewise Caputo and Atangana-Baleanu-Caputo operator as given below:

PCABC
0 Dv

t S(t) = S[r(1 − S
k )−

βI
1+αS − p1Y],

PCABC
0 Dv

t I(t) = I( βS
1+αS − ω),

PCABC
0 Dv

t Y(t) = Y(−Y1 + C1p1S − p2Z),
PCABC
0 Dv

t Z(t) = −Y2Z + C2p2YZ + µ.

(2)

In order to elaborate further, equation (2) can be expressed as follows:

CABC
0 Dv

t (S(t)) =

{
C
0 Dv

t (S(t)) =C f1(S, I, Y, Z, t), 0 < t ≤ t1,
ABC
0 Dv

t (S(t)) =ABC f1(S, I, Y, Z, t), t1 < t ≤ T,

CABC
0 Dv

t (I(t)) =

{
C
0 Dv

t (I(t)) =C f2(S, I, Y, Z, t), 0 < t ≤ t1,
ABC
0 Dv

t (I(t)) =ABC f2(S, I, Y, Z, t), t1 < t ≤ T,
(3)

CABC
0 Dv

t (Y(t)) =

{
C
0 Dv

t (Y(t)) =C f3(S, I, Y, Z, t), 0 < t ≤ t1,
ABC
0 Dv

t (Y(t)) =ABC f3(S, I, Y, Z, t), t1 < t ≤ T,

CABC
0 Dv

t (Z(t)) =

{
C
0 Dv

t (Z(t)) =C f4(S, I, Y, Z, t), 0 < t ≤ t1,
ABC
0 Dv

t (Z(t)) =ABC f4(S, I, Y, Z, t), t1 < t ≤ T,

In our study, we used piecewise fractional operators to describe the dynamics of the system, as they
can capture crossover and abrupt dynamics effectively [34, 35]. Specifically, we applied different
fractional operators to different intervals of the system and provided a qualitative analysis for each
subinterval. To assess stability, we used the UH stability analysis. Furthermore, we investigated
the utilization of piecewise terms and fractional orders in the final step of the system to obtain
approximate solutions that can accommodate dynamics of both integer and rational orders.
The rest of the paper is organized as in the section 2 we include some preliminaries in form of
definitions and lemmas. Section 3 comprised with the existence and uniqueness of solution of
said model along with the stability of solution. In section 4 we established the numerical scheme
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for the approximate solution of model in fractional piecewise format. To show the validness of the
obtain scheme we provide the graphical representation in the section 5 of numerical simulation.
At the end we give the concluding remarks.

2 Preliminaries

In this section, we recalled some definition from the literature.

Definition 1 [16] The ABC operator of a function X(t) with the condition X(t) ∈ H1(0, T) is defined as
follows:

ABC
0Dv

t (X(t)) =
ABC(v)

1 − v

∫ t

0

d
dy

X(y)Ev

[
−v

(
t − y

)v

1 − v

]
dy . (4)

Definition 2 [16] If we consider X(t) ∈ H1(0, T), the ABC integral can be expressed as follows:

ABC
0 Iv

t X(t) =
1 − v

ABC(v)
X(t) +

v
ABC(v)Γ(v)

∫ t

0
X(y)(t − y)v−1dy . (5)

Definition 3 [15] Let a function X(t), the Caputo derivative can be defined as:

C
0 Dv

t X(t) =
1

Γ(1 − v)

∫ t

0
X

′
(y)(t − y)n−v−1dy .

Definition 4 [21] Assume that X(t) is a function that is differentiable in a piecewise manner. In this case,
one can compute the piecewise derivative of X(t) using Caputo and ABC operator.

PCABC
0 Dv

t X(t) =

{
C
0 Dv

t X(t), 0 < t ≤ t1,
ABC
0 Dv

t X(t) t1 < t ≤ T.

The piecewise differential operator PCABC
0 Dv

t can be used to calculate the piecewise derivative of X(t).
Specifically, the Caputo operator is employed in the interval 0 < t ≤ t1, while the ABC operator is used in
the interval t1 < t ≤ T.

Definition 5 [21] Let X(t) be a function that is piecewise integrable. We can then compute its piecewise
derivative using the Caputo and ABC operators

PCABC
0 ItX(t) =


1

Γv

∫ t

t1

X(y)(t − y)v−1d(y), 0 < t ≤ t1,

1 − v
ABCv

X(t) +
v

ABCvΓv

∫ t

t1

X(y)(t − y)v−1d(y) t1 < t ≤ T.

We can represent the piecewise integral operator as PCABC
0 Iv

t , where the Caputo operator is applied in the
interval 0 < t ≤ t1, and the ABC operator is applied in the interval t1 < t ≤ T.

3 Theoretical analysis

This section focuses on establishing the existence results and uniqueness of solution for the
proposed system in the context of piecewise functions. We will investigate whether a solution
exists for the hypothetical piecewise differentiable function and its particular solution attribute.
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For the required solution, we will utilize the model (3) and provide additional clarification as
follows:

PCABC
0 Dv

t U (t) = G(t , U (t)), 0 < v ≤ 1,

U (0) = U0

is equal to

U (t) =


U0 +

1
Γ(v)

∫ t

0
G(y , U (y))(t − y)v−1dy , 0 < t ≤ t1,

U (t1) +
1 − v

ABC(v)
G(t , U (t)) +

v
ABC(v)Γ(v)

∫ t

t1

(t − y)v−1G(y , U (y))d(y), t1 < t ≤ T,
(6)

where

U (t) =


S(t)

I(t)

Y(t)

Z(t)

, U0 =


S0

I0

Y0

Z0

, Ut1 =


St1

It1

Yt1

Zt1

, G(t , U (t)) =

{
fi =

{
Cfi(S, I, Y, Z, t)
ABCfi(S, I, Y, Z, t)

, (7)

we consider i = 1, 2, 3, 4 and take 0 < t ≤ t < ∞. Let E1 represent the space for all piecewise
differential function from C[0, t ] to R, obviously it is a complete normed space and thus the Banach
space E1 = C[0, t ], equipped with a norm

∥U ∥ = max
t∈[0,t ]

|U (t)|.

We assume the following growth condition:

(C1) ∃ LU > 0; ∀ G, Ū ∈ E we have

|G(t , U )− G(t , Ū )| ≤ LG|U − Ū |,

(C2) ∃ CG > 0 & MG > 0,;

|G(t , U (t))| ≤ CG|U |+ MG.

If G is piece-wise continuous on (0, t1] and [t1, T] on [0, T ], also satisfying the assumption (C2),
then (3) has ≥ 1 solution.

Proof 1 We can apply the Schauder theorem to define a closed subset B and E in both subintervals of the
interval [0, $].

B = {U ∈ E : ∥U ∥ ≤ R1,2, R1,2 > 0},
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Consider a mapping $ : B → B and using (6) as

$(U ) =


U0 +

1
Γ(v)

∫ t1

0
G(y , U (y))(t − y)v−1dy , 0 < t ≤ t1,

U (t1) +
1 − v

ABC(v)
G(t , U (t)) +

v
ABC(v)Γ(v)

∫ t

t1

(t − y)v−1G(y , U (y))d(y), t1 < t ≤ T.
(8)

Any U ∈ B, we have

|$(U )(t)| ≤


|U0|+

1
Γ(v)

∫ t1

0
(t − y)v−1|G(y , U (y))|dy ,

|U(t1)|+
1 − v

ABC(v)
|G(t , U (t))|+

v
ABC(v)Γ(v)

∫ t

t1

(t − y)v−1|G(y , U (y))|d(y),

≤


|U0|+

1
Γ(v)

∫ t1

0
(t − y)v−1[CG|U |+ MG]dv ,

|U(t1)|+
1 − v

ABC(v)
[CG|U |+ MG] +

v
ABC(v)Γ(v)

∫ t

t1

(t − y)v−1[CG|U |+ MG]dy ,

≤


|U0|+

Tv

Γ(v + 1)
[CH |U |+ MG] = R1, 0 < t ≤ t1,

|U(t1)|+
1 − v

ABC(v)
[CG|U |+ MG] +

v(T − T)v

ABC(v)Γ(v) + 1
[CG|U |+ MG]d(v) = R2, t1 < t ≤ T,

≤
{

R1, 0 < t ≤ t1,

R2, t1 < t ≤ T.

Upon analyzing the previous equation, it can be concluded that U belongs to the set B. As a result, it
follows that $(B) ⊆ B, indicating the closure and completeness of $. To further showcase its complete
continuity, let us consider the initial interval in the Caputo sense as ti < tj ∈ [0, t1].

|$(U )(tj)− $(U )(ti)| =

∣∣∣∣ 1
Γ(v)

∫ tj

0
(tj − y)v−1G(y , U (y))dy −

1
Γ(v)

∫ ti

0
(ti − y)v−1G(y , U (y))dy

∣∣∣∣,
≤ 1

Γ(v)

∫ ti

0
[(ti − y)v−1 − (tj − y)v−1]|G(y , U (y))|dy

+
1

Γ(v)

∫ tj

ti

(tj − y)v−1|G(y , U (y))|dy ,

≤ 1
Γ(v)

[ ∫ ti

0
[(ti − y)v−1 − (tj − y)v−1]dy +

∫ tj

ti

(tj − y)v−1dy
]
(CH |U |+ MG),

≤ (CGU + MG)

Γ(v + 1)
[t y

j − t v
i + 2(tj − ti)

v ]. (9)

Next (9), we obtain ti → tj, and then

|$(U )(tj)− $(U )(ti)| → 0, as ti → tj.
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So, $ is equi-continuous in [0, t1]. Consider ti, tj ∈ [t1, T] in the sense of ABC as

|$(U )(tj)− $(U )(ti)| =

∣∣∣∣ 1 − v
ABC(v)

G(t , U (t)) +
v

ABC(v)Γ(v)

∫ tj

t1

(tj − y)v−1G(y , U (y))dy ,

−
1 − v

ABC(v)
G(t , U (t)) +

(v)
ABC(v)Γ(v)

∫ ti

t1

(ti − y)v−1G(y , U (y))dy
∣∣∣∣,

≤ v
ABC(v)Γ(v)

∫ ti

t1

[(ti − y)v−1 − (tj − y)v−1]|G(y , U (y))|dy

+
v

ABC(v)Γ(v)

∫ tj

ti

(tj − y)v−1|G(y , U (y))|dy ,

≤ v
ABC(v)Γ(v)

[ ∫ ti

t1

[(ti − y)v−1 − (tj − y)v−1]dy

+

∫ tj

ti

(tj − y)v−1dv
]
(CG|U |+ MG),

≤ v(CGU + MG)

ABC(v)Γ(v + 1)
[t v

j − t v
i + 2(tj − ti)

v ]. (10)

If ti → tj, then

|$(U )(tj)− $(U )(ti)| → 0, as ti → tj.

Therefore, it can be concluded that the operator $ exhibits equi-continuity in the interval [t1, T], thus making
it an equi-continuous map. By applying the Arzelà-Ascoli theorem, it can be inferred that $ is uniformly
continuous, continuous, and bounded. Furthermore, based on the Schauder theorem, it can be established
that problem (3) has at least one solution in the subintervals.

Moreover, if the operator $ satisfies the condition of being a contraction mapping with assumption (C1),
then the proposed system possesses a unique solution. The mapping $ : B → B is characterized by being
piece-wise continuous, let us consider two elements U and Ū ∈ B on the interval [0, t1] in the sense of
Caputo, as follows:

∥$(U )− $(Ū )∥ = max
t∈[0,t1]

∣∣∣∣ 1
Γ(v)

∫ t

0
(t − y)v−1G(y , U (y))dy −

1
Γ(v)

∫ t

0
(t − y)v−1G(y , Ū (y))dy

∣∣∣∣,
≤ Tv

Γ(v + 1)
LG∥U − Ū ∥. (11)

From (11), we have

∥$(U )− $(Ū )∥ ≤ Tv

Γ(v + 1)
LG∥U − Ū ∥. (12)

Consequently, it follows that $ satisfies the contraction mapping condition. Thus, according to the Banach
fixed-point theorem, the problem at hand possesses a unique solution in the given subinterval. Additionally,
it is worth noting that t ∈ [t1, T] in the ABC sense:

∥$(U )− $(Ū )∥ ≤ 1 − v
ABC(v)

LG∥U − Ū ∥+ v(T − Tv )

ABC(v)Γ(v + 1)
Lf∥U − Ū ∥, (13)
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or

∥$(U )− $(Ū )∥ ≤ LG

[
1 − v

ABC(v)
+

v(T − T)v

ABC(v)Γ(v + 1)

]
∥U − Ū ∥. (14)

This implies that $ satisfies the contraction mapping property. Consequently, the problem being considered
has a unique solution in the given sub-interval by virtue of the Banach fixed-point theorem. Therefore,
taking into account equations (12) and (14), it can be concluded that the proposed problem has a unique
solution on each sub-interval.

Analysis of stability

To prove the Ulam-Hyers stability for the considered model, we need to show that small perturba-
tions in the initial conditions or the parameters of the model result in small perturbations in the
solution of the model. This can be done by showing that the operator $ is Lipschitz continuous
with respect to the initial conditions or the parameters of the model.

Definition 6 The considered system (1) is said to be U-H stable if, for every ℵ > 0, the inequality holds
true. ∣∣∣PCABCDv

t U(t)− f(t , U(t))
∣∣∣ < ℵ, f or all, t ∈ T , (15)

There exists a unique solution U ∈ Z that is constant A > 0,∣∣∣∣U − U
∣∣∣∣

Z ≤ Aℵ, f or all, t ∈ T , (16)

Furthermore, if we consider an increasing function Ψ : [0,∞) → R+, the inequality described above can be
expressed as follows: ∣∣∣∣U − U

∣∣∣∣
Z ≤ AΨ(ℵ), f or each, t ∈ T ,

If Ψ(0) = 0, then the resulting solution is considered to be generalized U-H (G-H-U) stable.

Remark 1. Assuming that a function Ψ ∈ C(T ) does not depend on U ∈ W and satisfies Ψ(0) = 0,
we can conclude that:

|Ψ(t)| ≤ ℵ, t ∈ T
PCABCDv

t U(t) = f (t , U(t)) + Ψ(t), t ∈ T .

Lemma 1 Consider the function

PCABC
0 Dv

t U(t) = f(t , U(t)), 0 < v ≤ 1. (17)
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The solution of (17) is

U(t) =


U0 +

1
Γ(v)

∫ t

0
f(y , U(y))(t − y)v−1dy , 0 < t ≤ t1

U(t1) +
1 − v

ABC(v)
f(t , U(t)) +

v
ABC(v)Γ(v)

∫ t

t1

(t − y)v−1f(y , U(y))d(y), t1 < t ≤ T,
(18)

∣∣∣∣F(U)− F(U)
∣∣∣∣ ≤


T v

1
Γ(v + 1)

ℵ, t ∈ T1[
(1 − v)Γ(v) + (Tv

2 )

ABC(v)Γ(v)

]
ℵ = Λℵ, t ∈ T2.

(19)

Theorem 1 The implication of Lemma (1) is that if
L f T v

Γ(v) < 1, the solution to model (2) is H-U stable as
well as G-H-U stable.

Proof 2 If U ∈ W is a solution of (2) and U ∈ W is also a unique solution of (2), then we can conclude
that
Case:1 for t ∈ T , we have

∣∣∣∣U − U
∣∣∣∣ = sup

t∈T

∣∣∣∣U −

(
U◦ +

1
Γ(v)

∫ t1

0
(t1 − y)v−1f

(
y , U(y)

)
dy

)∣∣∣∣ ,

≤ sup
t∈T

∣∣∣∣U −

(
U◦ +

1
Γ(v)

∫ t1

0
(t1 − y)v−1f

(
y , U(y)

)
dy

)∣∣∣∣
+ sup

t∈T

∣∣∣∣+ 1
Γ(v)

∫ t1

0
(t1 − y)v−1f (y , U(y)) dy −

1
Γ(v)

∫ t1

0
(t1 − y)v−1f

(
y , U(y)

)
dy

∣∣∣∣ ,

≤ T∞
v

Γ(v + 1)
ℵ+

L fT∞

Γ(v + 1)

∣∣∣∣U − U
∣∣∣∣ .

(20)

On more calculation

∣∣∣∣U − U
∣∣∣∣ ≤

 T∞
Γ(v+1)

1 −
L f T∞

Γ(v+1)

ℵ. (21)

Case:2

∣∣∣∣U − U
∣∣∣∣ ≤ sup

t∈T

∣∣∣∣U −

[
U(t1) +

1 − v
ABC(v)

[f (t , U(t))]

+
v

ABC(v)Γ(v)

[∫ t

t1

(t − y)v−1f
(

y , U(y)
)

d(y)
]]∣∣∣∣

+ sup
t∈T

1 − v
ABC(v)

∣∣f (t , U(t))− f
(

t , U(t)
)∣∣

+ sup
t∈T

v
ABC(v)Γ(v)

∫ t

t1

(t − y)v−1 ∣∣f (y , U(y))− f
(

y , U(y)
)∣∣ ds.
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Using Λ =
[
(1−v)Γ(v)+Tv

2
ABC(v)Γ(v)

]
and further calculation we have

∣∣∣∣U − U
∣∣∣∣

W ≤ Λℵ+ ΛL f
∣∣∣∣U − U

∣∣∣∣
W ,

or

∣∣∣∣U − U
∣∣∣∣

W ≤

 Λ
1 − Λ

L f

ℵ. (22)

We use

A = max


 T1

Γ(v+1)

1 −
L f T1

Γ(v+1)

 ,
Λ

1 −
ΛL f

1−M f

 .

Now, from Eq. (21) and (22), we have∣∣∣∣U − U
∣∣∣∣

W ≤ Aℵ, at every t ∈ T .

Thus, we can conclude that the solution to model (2) is H-U stable. Additionally, if we substitute ℵ with
Ψ(ℵ) in (23), we get: ∣∣∣∣U − U

∣∣∣∣
W ≤ AΨ(ℵ), at each t ∈ T .

Therefore, we can infer that the solution to our proposed model (2) is G-H-U stable based on the fact that
Ψ(0) = 0.

4 Numerical scheme

Here, we will find the numerical scheme for the considered system (2).
PCABC
0 Dv

t S(t) = S[r(1 − S
k )−

βI
1+αS − p1Y],

PCABC
0 Dv

t I(t) = I( βS
1+αS − ω),

PCABC
0 Dv

t Y(t) = Y(−Y1 + C1p1S − p2Z),
PCABC
0 Dv

t Z(t) = −Y2Z + C2p2YZ + µ.

(23)

Using the piecewise-integral of Caputo and ABC derivative, we have
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S(t) =

S0 +
1

Γ(v)

∫t1
0 (t − y)v−1Cf1(t , S)dy 0 < t ≤ t1,

S(t1) +
1−v

AB(v)f1(t , S)dy + v
AB(v)Γ(v)

∫t
t1
(t − y)v−1f1(t , S)dy t1 < t ≤ T,

I(t) =

I0 +
1

Γ(v)

∫t1
0 (t − y)v−1Cf2(t , I)dy 0 < t ≤ t1,

I(t1) +
1−v

AB(v)f2(t , I)dy + v
AB(v)Γ(v)

∫t
t1
(t − y)v−1f2(t , I)dy t1 < t ≤ T,

(24)

Y(t) =

Y0 +
1

Γ(v)

∫t1
0 (t − y)v−1Cf3(t , Y)dy 0 < t ≤ t1,

Y(t1) +
1−v

AB(v)f3(t , Y)dy + v
AB(v)Γ(v)

∫t
t1
(t − y)v−1f3(t , Y)dy t1 < t ≤ T,

Z(t) =

Z0 +
1

Γ(v)

∫t1
0 (t − y)v−1Cf4(t , Z)dy 0 < t ≤ t1,

Z(t1) +
1−v

AB(v)f4(t , Z)dy + v
AB(v)Γ(v)

∫t
t1
(t − y)v−1f4(t , Z)dy t1 < t ≤ T.

At t = tn+1

S(t) =

S0 +
1

Γ(v)

∫t1
0 (t − y)v−1Cf1(t , S)dy 0 < t ≤ t1,

S(t1) +
1−v

AB(v)f1(t , S)dy + v
AB(v)Γ(v)

∫tn+1
t1

(t − y)v−1f1(t , S)dy t1 < t ≤ T,

I(t) =

I0 +
1

Γ(v)

∫t1
0 (t − y)v−1Cf2(t , E)dy 0 < t ≤ t1,

I(t1) +
1−v

AB(v)f2(t , I)dy + v
AB(v)Γ(v)

∫tn+1
t1

(t − y)v−1f2(t , I)dy t1 < t ≤ T,

Y(t) =

Y0 +
1

Γ(v)

∫t1
0 (t − y)v−1Cf3(t , I)dy 0 < t ≤ t1,

Y(t1) +
1−v

AB(v)f3(t , Y)dy + v
AB(v)Γ(v)

∫tn+1
t1

(t − y)v−1f3(t , Y)dy t1 < t ≤ T,

Z(t) =

Z0 +
1

Γ(v)

∫t1
0 (t − y)v−1Cf4(t , Z)dy 0 < t ≤ t1,

Z(t1) +
1−v

AB(v)f4(t , Z)dy + v
AB(v)Γ(v)

∫tn+1
t1

(t − y)v−1f4(t , Z)dy t1 < t ≤ T.

Using the Newton polynomials and some calculation, we have

S(tn+1) =



S0 +


(∆t)v−1

Γ(v + 1)

i∑
X=2

[C

f1(SX−2, tX−2)

]
Π +

(∆t)v−1

Γ(v + 2)

i∑
X=2

[C

f1(SX−1, tX−1)−
C f1(SX−2, tX−2)

]∧

+
v(∆t)v−1

2Γ(v + 3)

i∑
X=2

[C

f1(SX, tX)− 2Cf1(SX−1, tX−1) +
C f1(SX−2, tX−2)

]
∆

S(t1) +



1 − v
ABC(v)

ABCf1(Sn, tn) +
v

ABC(v)
(δt)v−1

Γ(v + 1)

n∑
X=i+3

[ABC

f1(SX−2, tX−2)

]
Π

+
v

ABC(v)
(v t)v−1

Γ(v + 2)

n∑
X=i+3

[ABC

f1(SX−1, tX−1) + ABCf1(SX−2, tX−2)

]∧

+
v

ABC(v)
v(v t)v−1

Γ(v + 3)

n∑
X=i+3

[ABC

f1(SX, tX)− 2ABCf1(SX−1, tX−1) +
ABC f1(SX−2, tX−2)

]
∆,

(25)
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I(tn+1) =



I0 +


(∆t)v−1

Γ(v + 1)

i∑
X=2

[C

f2(IX−2, tX−2)

]
Π +

(∆t)v−1

Γ(v + 2)

i∑
X=2

[C

f2(IX−1, tX−1)−
C f2(IX−2, tX−2)

]∧

+
v(∆t)v−1

2Γ(v + 3)

i∑
X=2

[C

f2(IX, tX)− 2Cf2(IX−1, tX−1) +
C f2(IX−2, tX−2)

]
∆

I(t1) +



1 − v
ABC(v)

ABCf2(In, tn) +
v

ABC(v)
(δt)v−1

Γ(v + 1)

n∑
X=i+3

[ABC

f2(IX−2, tX−2)

]
Π

+
v

ABC(v)
(v t)v−1

Γ(v + 2)

n∑
X=i+3

[ABC

f2(IX−1, tX−1) + ABCf2(IX−2, tX−2)

]∧

+
v

ABC(v)
v(v t)v−1

Γ(v + 3)

n∑
X=i+3

[ABC

f2(IX, tX)− 2ABCf2(IX−1, tX−1) +
ABC f2(IX−2, tX−2)

]
∆,

(26)

Y(tn+1) =



Y0 +


(∆t)v−1

Γ(v + 1)

i∑
X=2

[C

f3(YX−2, tX−2)

]
Π +

(∆t)v−1

Γ(v + 2)

i∑
X=2

[C

f3(YX−1, tX−1)−
C f3(YX−2, tX−2)

]∧

+
v(∆t)v−1

2Γ(v + 3)

i∑
X=2

[C

f3(YX, tX)− 2Cf3(YX−1, tX−1) +
C f3(YX−2, tX−2)

]
∆

Y(t1) +



1 − v
ABC(v)

ABCf3(Yn, tn) +
v

ABC(v)
(δt)v−1

Γ(v + 1)

n∑
X=i+3

[ABC

f3(YX−2, tX−2)

]
Π

+
v

ABC(v)
(v t)v−1

Γ(v + 2)

n∑
X=i+3

[ABC

f3(YX−1, tX−1) + ABCf3(YX−2, tX−2)

]∧

+
v

ABC(v)
v(v t)v−1

Γ(v + 3)

n∑
X=i+3

[ABC

f3(YX, tX)− 2ABCf3(YX−1, tX−1) +
ABC f3(YX−2, tX−2)

]
∆,

(27)

Z(tn+1) =



Z0 +


(∆t)v−1

Γ(v + 1)

i∑
X=2

[C

f4(ZX−2, tX−2)

]
Π +

(∆t)v−1

Γ(v + 2)

i∑
X=2

[C

f4(ZX−1, tX−1)−
C f4(ZX−2, tX−2)

]∧

+
v(∆t)v−1

2Γ(v + 3)

i∑
X=2

[C

f4(ZX, tX)− 2Cf4(ZX−1, tX−1) +
C f4(ZX−2, tX−2)

]
∆

Z(t1) +



1 − v
ABC(v)

ABCf4(Zn, tn) +
v

ABC(v)
(δt)v−1

Γ(v + 1)

n∑
X=i+3

[ABC

f4(ZX−2, tX−2)

]
Π

+
v

ABC(v)
(v t)v−1

Γ(v + 2)

n∑
X=i+3

[ABC

f4(ZX−1, tX−1) + ABCf4(ZX−2, tX−2)

]∧

+
v

ABC(v)
v(v t)v−1

Γ(v + 3)

n∑
X=i+3

[ABC

f4(ZX, tX)− 2ABCf4(ZX−1, tX−1) +
ABC f4(ZX−2, tX−2)

]
∆.

(28)

Here

Π =


(1 − X + m)v

(
2(−X + m)2 + (3v + 10)(−X + m) + 2v2 + 9v + 12

)
− (−X + m)

(
2(−X + m)2 + (5v + 10)(m − X) + 6v2 + 18v + 12

)
 ,
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∧
=


(1 − X + m)v

(
3 + n + 2v − X

)
− (−X + m)

(
m + 3v − X + 3

)
 ,

∆ =
[
(1 − X + m)v − (−X + m)v ]

,

and

Cf1(S, t) = ABCf1(S, t) = S[r(1 − S
k )−

βI
1+αS − p1Y],

Cf3(I, t) = ABCf3(I, t) = I( βS
1+αS − ω),

Cf2(Y, t) = ABCf2(Y, t) = Y(−Y1 + C1p1S − p2Z),
Cf4(Z, t) = ABCf4(Z, t) = −Y2Z + C2p2YZ + µ.

The above Eqs. (25)–(28) are the required solution for the aforementioned system.

5 Results and discussion

In this section we provide the numerical simulation of all four quantities of the considered
piecewise problem on different fractional orders using the data of Table 2 taken from [14]. We
also check the dynamics on two different intervals in the sense of Caputo and ABC fractional
operators. The biological interpretation and their explanation are given in the article [14]. Further,
the graphical results are simulated on different values lying between 0 and 1 which shows the total
density of each quantity in the form of a continuous spectrum. Furthermore, chaotic dynamics
are present in both divergent and convergent cases. All four quantities in the ecosystem oscillate
which shows the dependence of one quantity over another one. The piecewise simulation is also
provided on two subintervals the total time showing the sudden change dynamics or the crossover
behavior

Table 2. Parameters and their description in model (1)

Notations Numerical values - I Numerical Values - II
r 4.5 3.8
k 5 15
β 2 2
α 0.25 0.5
ω 1.6 1.6
d1 1 1

c1, c2 1, 1 1, 1
µ 1 1.24143

p1, p2 2,1 2,1

The graphical representation of the four compartments is given in Figures 1a-1d with chaotic
behaviors or phase portraits are given in Figures 1e-1f on different fractional orders using data
of Table 2 numerical values-I. The extra information is provided by the fractional operators by
taking extra orders lying between 0 and 1. For such data, the susceptible as well as infected plants
are fluctuated or oscillated along with the other two quantities of Herbivores having the same
dynamic. For this data, the said analysis is not converging faster as shown in the phase portrait
figures.
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Figure 1. Dynamics of all the four compartments, on different arbitrary fractional orders v = 0.75, 0.85, 0.95, 1
and time durations on any of the interval for the numerical value-I.

In figures 2a-2f, the graphical representation of the four compartments are given with chaotic
behaviors or phase portrait are given on different fractional orders using data of table 2 numerical
values-II. The extra information are provided by the fractional derivatives by taking extra orders
lies between 0 and 1. For such data the susceptible as well as infected plants are fluctuated or
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oscillating along with other two quantities of Herbivores having the same dynamics. But this time
the said analysis is converging faster as shown in the phase portrait figures.
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Figure 2. Dynamics of all the four compartments, on different arbitrary fractional orders v = 0.75, 0.85, 0.95, 1
and time durations on any of the interval for the numerical value-II.

In Figures 3a-3f, the graphical representation of the four compartments are given with chaotic
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behaviors or phase portrait are given on different fractional orders using data of table 2 numerical
values-I on two sub intervals showing the crossover behaviors. The extra information are provided
by the fractional derivatives by taking extra orders lies between 0 and 1. For such data the
susceptible as well as infected plants are fluctuated or oscillating along with other two quantities
of Herbivores having the oscillating dynamics. But this time the said analysis is not converging
faster as shown in the phase portrait figures.
In figures 4a-4d, the graphical representation of the four compartments are given with chaotic
behaviors or phase portrait are given on different fractional orders using data of table 2 numerical
values-I on two sub intervals showing the crossover behaviors. The more information are provided
by the fractional derivatives by taking extra orders lies between 0 and 1. For such data the
susceptible as well as infected plants are shifting in one another oscillating along with other two
quantities of Herbivores having the overlapping dynamics.
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Figure 4. Dynamics of all the four compartments, on different arbitrary fractional orders v = 0.99, 0.98, 0.97, 0.96
and time durations on any of two sub intervals [0, t1], [t1, t] for the numerical value-I showing the crossover
dynamics.

In figures 5a-5f, the graphical representation of the four compartments are given with one another
depending behaviors or phase portrait are given on different fractional orders using data of table 2
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Figure 3. Dynamics of all the four compartments, on different arbitrary fractional orders v = 0.99, 0.98, 0.97, 0.96
and time durations on any of two sub intervals [0, t1], [t1, t] for the numerical value-I.

numerical values-II on two sub intervals showing the crossover behaviors. The extra information
are provided by the fractional derivatives by taking extra orders lies between 0 and 1. For such
data the susceptible as well as infected plants are fluctuated or oscillating along with other two
quantities of Herbivores having the oscillating dynamics which converges faster as shown in the
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phase portrait figures.
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Figure 5. Dynamics of all the four compartments, on different arbitrary fractional orders v = 0.99, 0.98, 0.97, 0.96
and time durations on any of two sub intervals [0, t1], [t1, t] for the numerical value-II.
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6 Conclusion

Fractional-order differential equations with short memory play a crucial role in describing various
real-world problems. Based on this premise, the current work explores a four-compartmental
fractional-order plant model using the concept of piecewise derivative in both the Caputo and
ABC sense. The study has further successfully investigated for the existence results, uniqueness of
solution, and stability analysis of the considered problem, utilizing the fixed point concept and
nonlinear functional analysis tools. Substantial results were obtained and presented in this work.
The numerical solutions of the piecewise fractional model were computed using the Newton
Polynomial technique in this study. MATLAB-18 was utilized to depict the numerical results for
various fractional orders and time durations in this study. The results indicated that the piecewise
data provided additional information that described crossover dynamics for different fractional
orders. The graphical results obtained from both the piecewise and fractional order analysis were
found to be highly intriguing as such analysis are more informative and generalized in the contrast
of other relative work. The convergence and stability results are obtained by using fractional,
piece wise fractional aspects. Fractional operators are generalized because they have an extra
degree of freedom and choices. Therefore, we checked successfully the dynamics of different
fractional orders lying between 0 and 1, and compare them with the integer order. On small
fractional orders, stability is achieved quickly. Further, the piecewise fractional model is also
tested validly for the existence and uniqueness of the solution in the sense of fractional Caputo
and Atangana Baleanu operators having a kernel of non-singularity in the form of an exponential
function. The approximate or semi-analytical solution is obtained by the technique of piecewise
fractional Caputo and ABC derivative having the fractional parameter which shows the extra
degree of freedom. Taking different fractional orders, we have simulated the obtained scheme for
the first four terms. We also compare the fractional dynamics with the integer order dynamics.
All the quantities of the proposed problem are converging to their equilibrium points showing
spectrum dynamics with the removal of singularity as well as the crossover or abrupt dynamics.
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