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Abstract

This paper investigates the importance of studying the dynamics of predator-prey systems and
the specific significance of Neimark-Sacker and period-doubling bifurcations in discrete-time prey-
predator models. By conducting a numerical bifurcation analysis and examining bifurcation diagrams
and phase portraits, we present important results that differentiate our study from others in the field.
Firstly, our analysis reveals the occurrence of Neimark-Sacker and period-doubling bifurcations in
the model under certain parameter values. These bifurcations lead to the emergence of stable limit
cycles characterized by complex and unpredictable dynamics. This finding emphasizes the inherent
complexity and nonlinearity of predator-prey systems and contributes to a deeper understanding
of their dynamics. Additionally, our study highlights the advantages and limitations of employing
discrete-time models in population dynamics research. The use of discrete-time models allows for a
more tractable analysis while still capturing significant aspects of ecological systems. In conclusion,
this study holds importance in shedding light on the dynamics of predator-prey systems and the
specific role of Neimark-Sacker and period-doubling bifurcations. Our findings contribute to the
understanding of predator-prey systems and offer implications for ecological management strategies.
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1 Introduction

Predator-prey models have a long and significant history in ecological research. Notably, pioneers
in the field, including Alfred J. Lotka and Vito Volterra, made substantial contributions to the
development of these models in the early 20th century [1–3]. These models play a crucial role
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in enhancing our understanding of predator-prey interactions by examining the changes in
population sizes of both species over time. They provide valuable insights into the dynamics and
complexities of these ecological relationships.
In recent years, discrete-time predator-prey models have gained increasing attention as a means
to study ecological systems [4, 5]. These models offer various advantages over continuous-time
models, including ease of implementation and analysis, as well as the ability to incorporate
population fluctuations and stochastic effects. One prominent discrete-time model widely utilized
in predator-prey studies is the model, represented by the following equations [6–8]:{

xp(n + 1) = xp(n)(1 + r(1 − xp(n)/k)− a · yp(n)),

yp(n + 1) = yp(n)(1 − b + cxp(n)/yp(n)),
(1)

where xp(n) and yp(n) denote the prey and predator populations at time n, respectively. The
parameters r, k, a, b, and c play crucial roles in the model.
Understanding the significance of these variables in the context of predator-prey dynamics is
essential. For instance, the intrinsic growth rate (r) determines the prey population’s growth rate
in the absence of predators, while the carrying capacity (k) represents the maximum population
size that the environment can support. The predation rate (a), natural mortality rate (b), and
conversion factor (c) influence prey consumption and the predator population’s growth rate. By
carefully studying and manipulating these variables, researchers can gain insights into the intricate
dynamics of predator-prey interactions in nature.
In this paper, our focus lies on conducting a thorough bifurcation analysis of the model mentioned
above. Bifurcations are abrupt qualitative changes that occur in the behavior of a dynamic system
as a parameter is varied. Understanding the potential bifurcations within the model is crucial
for comprehending predator-prey dynamics and developing effective management strategies for
ecosystems and natural resources.
To enhance the literature review, we will extensively explore and incorporate relevant papers
in this field. We will delve into the historical development of predator-prey models, including
the influential Lotka-Volterra model and its various extensions. Furthermore, we will discuss
the advantages and limitations of discrete-time models and review the existing literature on
bifurcation analysis in predator-prey systems, with particular emphasis on Neimark-Sacker and
period-doubling bifurcations. We aim to establish a comprehensive understanding of the current
state of research in this area.
Additionally, we will present our numerical bifurcation analysis of the model, systematically vary-
ing the model parameters and analyzing the resulting bifurcation diagrams and phase portraits.
By identifying the parameter values at which Neimark-Sacker and period-doubling bifurcations
occur, we will shed light on their implications for predator-prey dynamics and the development
of effective management strategies.
Overall, our paper contributes to a deeper understanding of predator-prey system dynamics and
the occurrence of bifurcations. By incorporating a robust literature review, we aim to provide
valuable insights into the existing body of research. Our findings have significant implications
for the study of ecosystems, population dynamics, and the formulation of effective management
strategies for natural resources. The major contributions of this paper include:

i. Thorough Bifurcation Analysis: This paper conducts a comprehensive bifurcation analysis
of a discrete-time predator-prey model. By systematically varying the model parameters and
analyzing the resulting bifurcation diagrams and phase portraits, the study identifies the pa-
rameter values at which Neimark-Sacker and period-doubling bifurcations occur. This analysis
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provides valuable insights into the dynamics of predator-prey interactions and contributes to a
deeper understanding of ecosystem dynamics.
ii. Literature Review: The paper incorporates an extensive literature review, delving into the
historical development of predator-prey models, including the influential Lotka-Volterra model
and its extensions. It also discusses the advantages and limitations of discrete-time models
and reviews existing research on bifurcation analysis in predator-prey systems, with a focus on
Neimark-Sacker and period-doubling bifurcations. This comprehensive review enhances the
understanding of the current state of research in this field.

iii. Numerical Continuation Techniques: The paper presents numerical continuation techniques
for the discrete-time predator-prey model, allowing for the exploration of parameter variations
and the analysis of bifurcation phenomena. By employing these techniques, the study provides a
practical approach to studying predator-prey dynamics and offers insights into the development
of effective management strategies for natural resources.

Overall, the contributions of this paper advance the understanding of predator-prey system
dynamics and the occurrence of bifurcations. The combination of a thorough bifurcation analysis,
a comprehensive literature review, and the application of numerical continuation techniques
establish valuable insights into the intricate dynamics of predator-prey interactions and their
implications for ecological management.
Mathematical modeling and bifurcation analysis do not find application only in the field of
mathematical ecology such as predator-prey modeling [6–13], but are widely used to derive
dynamic process models in the field of mathematical epidemiology such as disease modeling [14–
28], artificial intelligence [29–33], and other fields of science and technology [34–41]. Researchers
continuously work in the field of mathematical ecology to present the challenges and suggest
solutions to help future researchers of the respective field understand the existing research gaps.
The subsequent sections of this paper are organized as follows: after the introduction in Section
1, Section 2 provides the details about the model description. Section 3 focuses on the existence
and feasibility of fixed points, while Section 4 carries out a bifurcation analysis of the positive
fixed point. In Section 5, we present numerical continuation techniques for the discrete-time
prey-predator system described by the model. Finally, we conclude our study with remarks in
Section 6, summarizing the key findings and suggestions for future research.

2 Model description

The predator-prey model considered in this study is a discrete-time model that builds upon the
classic Lotka-Volterra framework. It incorporates key ecological dynamics and assumptions to
capture the interactions between prey and predator populations over discrete time steps.
The model describes the population dynamics of two species: the prey (denoted as xp) and the
predator (denoted as yp). The population sizes of both species are assumed to change over discrete
time intervals.
The model formulation assumes the following dynamics:

i. Prey Growth: The prey population experiences logistic growth, influenced by its intrinsic
growth rate (r) and the carrying capacity of the environment (k). The logistic growth term
ensures that the prey population growth slows down as it approaches the carrying capacity,
representing limited resources and environmental constraints.
ii. Predator-Prey Interaction: The model assumes that the predator population is primarily
sustained by predation on the prey population. The predation rate (a) determines the impact of
predators on prey consumption. As the prey population increases, the predation rate increases,
reflecting a functional response.
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iii. Predator Dynamics: The predator population is influenced by prey consumption and natural
mortality. The conversion factor (c) represents the efficiency of converting consumed prey into
predator population growth, while the natural mortality rate (b) accounts for non-predation-
related predator mortality.

The discrete-time equations describing the model are as follows:xp(n + 1) = xp(n)
(

1 + r
(

1 −
xp(n)

k

)
− a · yp(n)

)
,

yp(n + 1) = yp(n)
(

1 − b + c·xp(n)
yp(n)

)
,

(2)

where xp(n) and yp(n) represent the prey and predator populations at discrete time step n,
respectively.
It is important to note that while this model is based on the Lotka-Volterra framework, it may
incorporate modifications or refinements to capture specific ecological dynamics or address limita-
tions observed in previous models. However, without further details on the specific modifications,
it is challenging to determine the novelty of this particular model.
The model provides a simplified representation of predator-prey dynamics, focusing on the
key factors that influence population interactions. By analyzing the model’s dynamics, such
as bifurcations and stability, we can gain insights into the complex dynamics of predator-prey
systems and their implications for ecosystem management and conservation strategies.
In the following sections, we will delve into the analysis of this model, exploring its steady-state
solutions, conducting bifurcation analyses, and utilizing numerical techniques to gain a deeper
understanding of predator-prey dynamics and their implications for ecological systems.

3 Fixed points: existence and feasibility

The fixed points of system (1) can be obtained from the following equations: xp

(
1 + r

(
1 −

xp
k

)
− a yp

)
= xp,

yp

(
1 − b + cxp

yp

)
= yp.

(3)

Solving for the fixed points of system (1) leads to the identification of the positive fixed point as:

P∗ =

(
rkb

ack + br
,

crk
ack + br

)
.

In the upcoming section, we will discuss one-parameter bifurcations of the positive fixed point P∗.
Understanding the existence and feasibility of fixed points is essential in analyzing the behavior
and stability of dynamical systems. By investigating the properties of fixed points, researchers
can gain insights into the long-term dynamics of the system and predict how it will evolve under
different conditions and perturbations.

4 Bifurcation analysis of the positive fixed point P∗

The map Mpp(P , Ω) represents the system (1), where P =
(
xp, yp

)T and Ω = (a, b, c, r, k)T. This
map can be expanded using the Taylor series expansion, such that:

Mpp(P , Ω) = J1(P , Ω)P +
1
2!
J2(P ,P) +

1
3!
J3(P ,P ,P) +O(∥ P ∥4),
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where ∥ P ∥=
√

x2
p + y2

p, and J1. The elements of J2 and J3 are given by:

J2,i(Γ, Σ) =
2∑

j,k=1

∂2Mpp
i (P , Ω)

∂P j∂Pk
γjσk,

J3,i(Γ, Σ, Υ) =
2∑

j,k,l=1

∂3Mpp
i (P , Ω)

∂Pj∂Pk∂Pl
γjσkυl ,

where Γ = (γ1, γ2)
T, Σ = (σ1, σ2)

T, and Υ = (υ1, υ2)
T. By studying the eigenvalues and eigenvec-

tors of the Jacobian matrices, one can determine the stability and bifurcations of the fixed point
P∗ under different parameter values. This analysis is crucial in understanding the complex and
fascinating dynamics of the predator-prey system.

One parameter bifurcation

This section considers the bifurcation parameter a, which plays a crucial role in determining the
behavior and stability of the predator-prey system. By varying the value of a, researchers can
explore how the system responds to changes in the predation rate of the predator population on
the prey population. This analysis is essential in understanding the dynamics of the system and
predicting its long-term behavior under different conditions and scenarios.

Theorem 1 Under the influence of the bifurcation parameter a, the positive fixed point P∗ undergoes a
period-doubling bifurcation at a critical value of a, given by:

a = aPD = −
br (br − 2 b − 2 r + 4)

ck (br − 2 b + 4)
.

During this bifurcation, the dynamics of the predator-prey system exhibit a doubling of the period of
oscillation. This phenomenon is a hallmark of nonlinear dynamical systems and can have significant
implications for the system’s behavior and stability. Understanding the nature and timing of bifurcations is
crucial for predicting the long-term behavior of the system and developing effective control strategies to
manage and mitigate potential risks.

Proof When a = aPD, the Jacobian matrix of the system evaluated at the fixed point P∗ is given by:

J1 =

(
−1 − 1/2 br + b 1/2 (r−2)(b−2)b

c

c 1 − b

)
.

The eigenvalues of J1 at a = aPD are:

λ1
PD = −1, λ2

PD = −1/2 br + 1.

A period-doubling bifurcation occurs on the curve T pp
PD =

{
(xp, yp, a, b, c, r, k); a = aPD

}
if λ2

PD ̸=
±1. In this case, the dynamics of the system exhibit a doubling of the period of oscillation. The
map Mpp can be expressed as:

ηPD 7→ −ηPD +
1
6

β̂
pp
PDη3

PD +O(η4
PD),
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where β̂
pp
PD is given by:

b̂pp
PD =

1
6
⟨wPD,J3(vPD, vPD, vPD)

+3J2

(
vPD, (I2 −J1)

−1 J2(vPD, vPD)
)〉

.

Here, J1 vPD = −vPD and J T
1 wPD = −wPD, with ⟨wPD, vPD⟩ = 1. Using these relationships, we

find that:

vPD =

( b−2
c

1

)
, wPD =

2 c
br−4

(r−2)b
br−4

 .

Substituting these expressions into the formula for β̂
pp
PD, we obtain:

β̂
pp
PD = 16

r (b − 2)3 (r + 2)

(br − 2 b + 4)2 k2c2 (br − 4)
.

The sign of β̂
pp
PD determines the nature of the bifurcation. A stable (unstable) double period cycle

occurs when β̂
pp
PD > 0 (β̂pp

PD < 0), and the bifurcation is supercritical (subcritical).
Therefore, we have shown that when a = aPD, the fixed point P∗ undergoes a period-doubling

bifurcation, and the nature of the bifurcation depends on the sign of β̂
pp
PD. This completes the proof

of Theorem 1. ■
The following theorem characterizes the behavior of the predator-prey system in the presence of a
specific value of the bifurcation parameter a:

Theorem 2 When a = aNS = −
r(br−b−r)

ck(r−1) , the positive fixed point P∗ undergoes a Neimark-Sacker
bifurcation.

Proof We begin by considering the case where a = aNS, where aNS is defined as aNS = −
r(br−b−r)

ck(r−1) .
In this case, the Jacobian matrix of the predator-prey system evaluated at the positive fixed point
P∗ takes the form:

J1 =

(
−br + b + 1 b(br−b−r)

c
c 1 − b

)
.

The eigenvalues of J1 are complex conjugate pairs given by:

λ1,2
NS = e±iθ0 = −

1
2

br + 1 ± i
1
2

√
−b2r2 + 4br,

where θ0 is a real number.
On the curve T pp

NS =
{(

xp, yp, a, b, c, r, k); a = aNS
)}

, a Neimark-Sacker bifurcation is possible. The
map Mpp can be expressed as:

ηNS 7→ eiθ0 ηNS + δ̂
pp
NSη2

NSηNS +O(|ηNS|
4),
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where δ̂
pp
NS is given by:

δ̂
pp
NS =

1
2
⟨wNS,J3 (vNS, vNS, vNS) + 2J2

(
vNS, (I2 −J1)

−1 J2(vNS, vNS)
)

+ J2

(
vNS,

(
e2iθ0 I2 −J1

)−1
J2(vNS, vNS)

)
⟩,

where vNS and wNS are the eigenvectors of J1 corresponding to the eigenvalues λ1
NS and λ2

NS,
respectively. We have also used the notation ⟨wNS, vNS⟩ = 1. A non-degenerate Neimark-Sacker

bifurcation occurs on the curve T pp
NS when δ̂

pp
NS ̸= 0. The sign of σ̂

pp
NS = ℜ

(
e−iθ0 δ̂

pp
NS

)
determines

the type of bifurcation. Specifically, if σ̂
pp
NS < 0 (σ̂pp

NS > 0), there is a stable (unstable) closed
invariant curve, and the bifurcation is supercritical (subcritical). For further details, see [42–44]. ■

5 Numerical continuation

A numerical verification of analytical findings is very important from a practical viewpoint. This
verification is not possible without the help of computer software like MATLAB as well as Math-
ematica. In this current section, MATCONTM is used for confirming the analytical results and
obtaining further information about the behavior of Mpp, [45]. It uses numerical continuation as
a method to confirm the analytical results. This section will examine two distinct cases, providing
a more detailed analysis of the predator-prey system under different conditions.

Case 1: Our assumptions are that b = 2.5, c = 0.05, r = 1.2, k = 200 are fixed parame-
ters. One parameter bifurcation is produced by the continuation method by varying the free
parameter a:

i) For a = aPD = 0.060000, there is a period-doubling bifurcation (PD) at

PPD = (166.666667, 3.333333), with β̂
pp
PD = −1.90090 × 10−04.

Since β̂
pp
PD < 0, we conclude that the period-doubling bifurcation is subcritical. Figure 1 displays

the period-doubling bifurcation diagram.
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Figure 1. The period-doubling bifurcation diagram
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Case 2: Our assumptions are that b = 0.15, c = 0.05, r = 1.2, k = 200 are fixed parameters. One
parameter bifurcation is produced by the continuation method by varying the free parameter a:

i) For a = aNS = 0.702000, there is a Neimark-Sacker bifurcation (NS)
at PNS = (5.000000, 1.666667), with σ̂

pp
NS = 8.873596 × 10−06.

(a) (b)

(c) (d)

Figure 2. Phase portraits of Mpp near PNS
(a) a = aNS = 0.6 (b) a = aNS = 0.702 (c) a = aNS = 0.73 (d) a = aNS = 0.75

Phase portraits of Mpp near PNS are depicted in Figure 2. Figure 2(a) illustrates the presence of a
stable fixed point preceding the Neimark-Sacker point. In Figure 2(b), a closed invariant curve is
observed at the Neimark-Sacker point. The closed invariant curve is shown to be broken after the
Neimark-Sacker point in Figure 2(c). Finally, Figure 2(d) demonstrates the existence of a chaotic
attractor.

6 Conclusion

In this study, we conducted a comprehensive investigation into the Neimark-Sacker and period-
doubling bifurcations occurring in a discrete-time prey-predator model using numerical bifur-
cation analysis. By identifying the specific bifurcation scenarios and their consequences, we
gain insights that can inform ecological management and the development of effective strategies
for natural resource management. Our analysis revealed that the model displays intricate and
unpredictable dynamics under certain parameter values, which can be attributed to the emergence
of stable limit cycles. These findings significantly contribute to our understanding of the dynamics



Naik et al. | 119

of predator-prey systems and the potential bifurcations that can arise, thereby bearing implications
for the study of ecosystems and population dynamics.
Furthermore, we thoroughly discussed the advantages and limitations associated with employ-
ing discrete-time models in population dynamics research. Discrete-time models offer notable
advantages, including easier implementation and analysis, as well as the ability to account for
population fluctuations and stochastic effects. However, it is important to acknowledge their
limitations, such as assuming discrete generations and the potential for measurement errors.
Our study emphasizes the significance of comprehending the dynamics of predator-prey systems
and the potential bifurcations that can manifest, providing a valuable framework for future
research endeavors in this domain. Further investigations could explore the effects of diverse
model parameters and initial conditions on the system’s dynamics, as well as how the outcomes
of our analysis can be effectively applied to real-world ecological systems.
To summarize, our study significantly advances our understanding of the dynamics of predator-
prey systems and the potential bifurcations that can arise within discrete-time models. These
findings hold crucial implications for the study of ecosystems and population dynamics, thereby
aiding the development of effective management strategies for natural resources.
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