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Universidad Politécnica de Cartagena
Spain
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Abstract

This study introduces several updated results for the piecewise plant-pathogen-herbivore interactions
model with singular-type and nonsingular fractional-order derivatives. A piecewise fractional model
has developed to describe the interactions between plants, disease, (insect) herbivores, and their
natural enemies. We derive essential findings for the aforementioned problem, specifically regarding
the existence and uniqueness of the solution, as well as various forms of Ulam Hyers (U-H) type
stability. The necessary results were obtained by utilizing fixed-point theorems established by Schauder
and Banach. Additionally, the U-H stabilities were determined based on fundamental principles of
nonlinear analysis. To implement the model as an approximate piecewise solution, the Newton
Polynomial approximate solution technique is employed. The applicability of the model was validated
through numerical simulations both in fractional as well as piecewise fractional format. The motivation
of our article is that we have converted the integer order problem to a global piecewise and fractional
order model in the sense of Caputo and Atangana-Baleanu operators and investigate it for existence,
uniqueness of solution, Stability of solution and approximate solution along with numerical simulation
for the validity of our obtained scheme.

Keywords: Crossover behavior; piecewise global fractional derivatives; Newton interpolation formula;
equicontinuous mapping; Schauder’s fixed point theorem

AMS 2020 Classification: 34A34; 34A36; 92B05

1 Introduction

The interactions between plants, herbivores, and pathogens in nature are complex and multifaceted.

According to a reference [1], approximately 50% of the estimated 6 million species of insects are
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herbivorous. On the other hand, plant pathogenic microbes pose significant threats to plants

[2], but their total number has not been accurately estimated. Plants have evolved sophisticated

defense mechanisms to detect and respond to multiple attacks by herbivores and pathogens

[3]. These mechanisms can be broadly classified into two types: physical and chemical defenses.

Regarding chemical defense, plants have the ability to release volatile organic compounds (VOCs)

that can attract natural enemies of herbivores. This process can ultimately help to decrease

herbivore pressure [4, 5]. Predatory mites and parasitic wasps are among the natural enemies of

herbivores that are attracted by volatile organic compounds (VOCs) released by plants [6].

A good example of this is when lima bean and apple plants are attacked by spider mites. In

response to this damage, the plants release volatile compounds that can attract predatory mites to

help control the spider mite population. Similarly, several plant species, including cucumber, corn,

and cotton, release herbivore-induced plant volatiles (HIPVs) when attacked by herbivores. The

use of HIPVs can help control pests and potentially reduce the need for artificial pesticides. Plants

have the ability to release HIPVs, which are lipophilic liquids with high vapor pressures that can be

emitted from various parts of a plant, such as its leaves, flowers, and fruits [7]. Through the release

of HIPVs, plants may help protect forestry and agriculture by potentially attracting predatory

arthropods or repelling herbivores, ultimately promoting plant fitness [8–10]. In addition, the

release of volatile compounds can also help damaged plants by attracting natural enemies of

herbivores [11]. Studies focusing on the interactions between plants and herbivores, as well as

plants and pathogens, have been extensively researched. The influence of VOCs in mediating

tri-trophic interactions, which occur when plants are attacked by both herbivores and pathogens,

has yet to be fully understood. In a recent study by Liu et al. [12], they examined a model

that involved plants, herbivores, and natural enemies of herbivores in the context of tri-trophic

interactions, but did not take into account the potential pathogenic effects on the plant population.

The study indicated that an increase in the strength of plant-induced volatile attraction to natural

enemies resulted in a greater fluctuation amplitude of plant biomass and herbivore population.

Previous studies have primarily investigated the interactions between plants and either herbivores

or pathogens. However, the extent to which VOCs mediate tri-trophic interactions when plants

are attacked by both herbivores and pathogens remains uncertain. In a recent study by Liu

et al. [12], they investigated tri-trophic interactions involving plants, herbivores, and natural

enemies of herbivores without considering the pathogenic effects on plant populations. They

found that an increase in the attraction strength of plant-induced volatiles to natural enemies

leads to high fluctuation amplitudes of plant biomass and herbivore populations. Based on the

study by Fergola and Wang [13], when the attack strength of natural enemies reaches a certain

level, the fluctuation amplitude of plant biomass and herbivore population decreases, and the

plant biomass tends to approach its environmental carrying capacity. They enhanced Liu et al.’s

model [12] by considering the impact of time delay. Their research indicated that for Volterra-type

interactions, chemical attractions do not affect the threshold value for the persistence of herbivore

and carnivore populations. In addition, their observations showed that the presence of carnivores

could lead to a decrease in herbivore density while increasing plant density. Moreover, the model

demonstrated a fold bifurcation when the predation process follows Leslie-type interactions.

Based on the literature discussed above, we investigated a model for plants [14] using the frame-

work of piecewise derivative and integral operators. The model consists of four compartments,

including the susceptible plant compartment (S), the infected plant compartment (I), and the

herbivore (Y) and natural enemy (Z) populations. The system of ordinary differential equations
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can be expressed as follows:

dS

dt
= S

[

r
(

1 −
S

k

)

−
βI

1 + αS
− p1Y

]

,

dI

dt
= I

(

βS

1 + αS
− ω

)

,

dY

dt
= Y

(

− d1 + C1p1S − p2Z
)

,

dZ

dt
= −Y2Z + C2p2YZ + µ.

(1)

The parameters used in the above system with details are presented in Table 1.

Table 1. Details of the used parameters in model (1).

Notations Details

r The growth rate of plant

k The rate of environmental carrying capacity

β The rate of transmission of the disease

α Rate of the inhibition effect

ω Death rate of the infected plants

d1 Herbivore death rate

c1, c2 The rates of conversion

µ The rate herbivore natural enemy

p1, p2 The rates of predation for plants

Fractional derivatives are known for their ability to incorporate memory and genetic effects,

making them essential for studying various real-world dynamic problems. The application

of fractional-order derivatives in mathematical models of infectious disease spread makes the

situation more realistic and plausible. The conventional fractional calculus method involves

long memory effects, which can lead to complications when dealing with long-term calculation

problems. Moreover, power-law long memory is represented using classical fractional calculus

mathematical tools, which consist of fractional order derivatives and integrals. Several researchers

have presented different fractional operators and investigated mathematical modeling of linear

and nonlinear problems to discuss real-world phenomena [15–18]. It is worth noting that when

modeling different memory phenomena, the memory process is generally split into two stages.

The memory process is typically divided into two stages, one involving short-term memory with

permanent retention, while the other is governed by a simple fractional derivative model [19].

To tackle the issue of short-term memory, it is necessary to employ equations with piecewise

fractional-order derivatives. This approach can enhance performance and efficiency, enabling

clearer explanations of physical phenomena (see [20] for further information). Moreover, the idea

of using piecewise derivatives of fractional orders has recently been explored in several studies.

The concept of piecewise fractional differential equations has been employed by researchers in

recent studies, after Atangana and Araz presented in [21], to explore various dynamical systems

[22–24]. Such operators have proven useful in solving problems that exhibit crossover behavior

and are gaining popularity among researchers. For instance, in [25], the CAT-T cells-SARS-2

disease model was investigated using the concept of piecewise fractional differential equations.

Similarly, a Covid-19 model was studied using this approach in [26]. Additionally, authors

in [27] examined the third wave of the Covid-19 outbreak in Türkiye, Spain, and Czechia by
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employing piecewise differential and integral operators in their model. In addition, the concept

of piecewise operators is being utilized by several authors to obtain numerical results for the

food web model (see Ref. [28]). Numerous works have been documented by several researchers

regarding piecewise differential and integral operators with various operators [29–33].

As for as the contribution of our article is concerned, we have converted the integer order problem

to a global piecewise and fractional order model in the sense of Caputo and Atangana Baleanu

operators (PCABC). As fractional operators are generalized because they have an extra degree

of freedom and choices. Therefore, we checked the dynamics of different fractional orders lying

between 0 and 1, and compared them with the integer order. On small fractional orders, stability is

achieved quickly. The piecewise fractional model is investigated for the existence and uniqueness

of the solution in the sense of fractional Caputo and Atangana Baleanu operator having a kernel

of non-singularity in the form of the exponential function. The approximate or semi-analytical

solution is obtained by the technique of piecewise fractional Caputo and ABC derivative. Taking

different fractional orders we have simulated the obtained scheme for the first four terms. We

have also compared the fractional dynamics with the integer order dynamics. All the quantities of

the proposed problem are converging to their equilibrium points showing spectrum dynamics

with the removal of singularity as well as the crossover or abrupt dynamics.

Motivated by the above-mentioned work, we study the system taken from [14] in the sense of

piecewise Caputo and Atangana-Baleanu-Caputo operator as given below:






PCABC
0 Dv

t S(t) = S[r(1 −
S
k )−

βI
1+αS − p1Y],

PCABC
0 Dv

t I(t) = I( βS
1+αS − ω),

PCABC
0 Dv

t Y(t) = Y(−Y1 + C1p1S − p2Z),
PCABC
0 Dv

t Z(t) = −Y2Z + C2p2YZ + µ.

(2)

In order to elaborate further, equation (2) can be expressed as follows:

CABC
0 Dv

t (S(t)) =

{
C
0 Dv

t (S(t)) =C f1(S, I, Y, Z, t), 0 < t ≤ t1,

ABC
0 Dv

t (S(t)) =ABC f1(S, I, Y, Z, t), t1 < t ≤ T,

CABC
0 Dv

t (I(t)) =

{
C
0 Dv

t (I(t)) =C f2(S, I, Y, Z, t), 0 < t ≤ t1,

ABC
0 Dv

t (I(t)) =ABC f2(S, I, Y, Z, t), t1 < t ≤ T,
(3)

CABC
0 Dv

t (Y(t)) =

{
C
0 Dv

t (Y(t)) =C f3(S, I, Y, Z, t), 0 < t ≤ t1,

ABC
0 Dv

t (Y(t)) =ABC f3(S, I, Y, Z, t), t1 < t ≤ T,

CABC
0 Dv

t (Z(t)) =

{
C
0 Dv

t (Z(t)) =C f4(S, I, Y, Z, t), 0 < t ≤ t1,

ABC
0 Dv

t (Z(t)) =ABC f4(S, I, Y, Z, t), t1 < t ≤ T,

In our study, we used piecewise fractional operators to describe the dynamics of the system, as they

can capture crossover and abrupt dynamics effectively [34, 35]. Specifically, we applied different

fractional operators to different intervals of the system and provided a qualitative analysis for each

subinterval. To assess stability, we used the UH stability analysis. Furthermore, we investigated

the utilization of piecewise terms and fractional orders in the final step of the system to obtain

approximate solutions that can accommodate dynamics of both integer and rational orders.

The rest of the paper is organized as in the section 2 we include some preliminaries in form of

definitions and lemmas. Section 3 comprised with the existence and uniqueness of solution of

said model along with the stability of solution. In section 4 we established the numerical scheme
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for the approximate solution of model in fractional piecewise format. To show the validness of the

obtain scheme we provide the graphical representation in the section 5 of numerical simulation.

At the end we give the concluding remarks.

2 Preliminaries

In this section, we recalled some definition from the literature.

Definition 1 [16] The ABC operator of a function X(t) with the condition X(t) ∈ H1(0, T) is defined as

follows:

ABC
0Dv

t (X(t)) =
ABC(v)

1 − v

∫ t

0

d

dy
X(y)Ev

[

−v
(

t − y
)v

1 − v

]

dy . (4)

Definition 2 [16] If we consider X(t) ∈ H1(0, T), the ABC integral can be expressed as follows:

ABC
0 Iv

t X(t) =
1 − v

ABC(v)
X(t) +

v

ABC(v)Γ(v)

∫ t

0
X(y)(t − y)v−1dy . (5)

Definition 3 [15] Let a function X(t), the Caputo derivative can be defined as:

C
0 Dv

t X(t) =
1

Γ(1 − v)

∫ t

0
X

′
(y)(t − y)n−v−1dy .

Definition 4 [21] Assume that X(t) is a function that is differentiable in a piecewise manner. In this case,

one can compute the piecewise derivative of X(t) using Caputo and ABC operator.

PCABC
0 Dv

t X(t) =

{
C
0 Dv

t X(t), 0 < t ≤ t1,

ABC
0 Dv

t X(t) t1 < t ≤ T.

The piecewise differential operator PCABC
0 Dv

t can be used to calculate the piecewise derivative of X(t).

Specifically, the Caputo operator is employed in the interval 0 < t ≤ t1, while the ABC operator is used in

the interval t1 < t ≤ T.

Definition 5 [21] Let X(t) be a function that is piecewise integrable. We can then compute its piecewise

derivative using the Caputo and ABC operators

PCABC
0 ItX(t) =






1

Γv

∫ t

t1

X(y)(t − y)v−1d(y), 0 < t ≤ t1,

1 − v

ABCv
X(t) +

v

ABCvΓv

∫ t

t1

X(y)(t − y)v−1d(y) t1 < t ≤ T.

We can represent the piecewise integral operator as PCABC
0 Iv

t , where the Caputo operator is applied in the

interval 0 < t ≤ t1, and the ABC operator is applied in the interval t1 < t ≤ T.

3 Theoretical analysis

This section focuses on establishing the existence results and uniqueness of solution for the

proposed system in the context of piecewise functions. We will investigate whether a solution

exists for the hypothetical piecewise differentiable function and its particular solution attribute.
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For the required solution, we will utilize the model (3) and provide additional clarification as

follows:

PCABC
0 Dv

t U (t) = G(t , U (t)), 0 < v ≤ 1,

U (0) = U0

is equal to

U (t) =






U0 +
1

Γ(v)

∫ t

0
G(y , U (y))(t − y)v−1dy , 0 < t ≤ t1,

U (t1) +
1 − v

ABC(v)
G(t , U (t)) +

v

ABC(v)Γ(v)

∫ t

t1

(t − y)v−1G(y , U (y))d(y), t1 < t ≤ T,

(6)

where

U (t) =






S(t)

I(t)

Y(t)

Z(t)

, U0 =






S0

I0

Y0

Z0

, Ut1
=






St1

It1

Yt1

Zt1

, G(t , U (t)) =

{

fi =

{
Cfi(S, I, Y, Z, t)
ABCfi(S, I, Y, Z, t)

, (7)

we consider i = 1, 2, 3, 4 and take 0 < t ≤ t < ∞. Let E1 represent the space for all piecewise

differential function from C[0, t ] to R, obviously it is a complete normed space and thus the Banach

space E1 = C[0, t ], equipped with a norm

∥U ∥ = max
t∈[0,t ]

|U (t)|.

We assume the following growth condition:

(C1) ∃ LU > 0; ∀ G, Ū ∈ E we have

|G(t , U )− G(t , Ū )| ≤ LG|U − Ū |,

(C2) ∃ CG > 0 & MG > 0,;

|G(t , U (t))| ≤ CG|U |+ MG.

If G is piece-wise continuous on (0, t1] and [t1, T] on [0, T ], also satisfying the assumption (C2),

then (3) has ≥ 1 solution.

Proof 1 We can apply the Schauder theorem to define a closed subset B and E in both subintervals of the

interval [0, $].

B = {U ∈ E : ∥U ∥ ≤ R1,2, R1,2 > 0},
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Consider a mapping $ : B → B and using (6) as

$(U ) =






U0 +
1

Γ(v)

∫
t1

0
G(y , U (y))(t − y)v−1dy , 0 < t ≤ t1,

U (t1) +
1 − v

ABC(v)
G(t , U (t)) +

v

ABC(v)Γ(v)

∫
t

t1

(t − y)v−1G(y , U (y))d(y), t1 < t ≤ T.

(8)

Any U ∈ B, we have

|$(U )(t)| ≤






|U0|+
1

Γ(v)

∫
t1

0
(t − y)v−1|G(y , U (y))|dy ,

|U(t1)|+
1 − v

ABC(v)
|G(t , U (t))|+

v

ABC(v)Γ(v)

∫
t

t1

(t − y)v−1|G(y , U (y))|d(y),

≤






|U0|+
1

Γ(v)

∫
t1

0
(t − y)v−1[CG|U |+ MG]dv ,

|U(t1)|+
1 − v

ABC(v)
[CG|U |+ MG] +

v

ABC(v)Γ(v)

∫
t

t1

(t − y)v−1[CG|U |+ MG]dy ,

≤






|U0|+
Tv

Γ(v + 1)
[CH |U |+ MG] = R1, 0 < t ≤ t1,

|U(t1)|+
1 − v

ABC(v)
[CG|U |+ MG] +

v(T − T)v

ABC(v)Γ(v) + 1
[CG|U |+ MG]d(v) = R2, t1 < t ≤ T,

≤

{
R1, 0 < t ≤ t1,

R2, t1 < t ≤ T.

Upon analyzing the previous equation, it can be concluded that U belongs to the set B. As a result, it

follows that $(B) ⊆ B, indicating the closure and completeness of $. To further showcase its complete

continuity, let us consider the initial interval in the Caputo sense as ti < tj ∈ [0, t1].

|$(U )(tj)− $(U )(ti)| =

∣

∣

∣

∣

1

Γ(v)

∫
tj

0
(tj − y)v−1G(y , U (y))dy −

1

Γ(v)

∫
ti

0
(ti − y)v−1G(y , U (y))dy

∣

∣

∣

∣

,

≤
1

Γ(v)

∫
ti

0
[(ti − y)v−1

− (tj − y)v−1]|G(y , U (y))|dy

+
1

Γ(v)

∫
tj

ti

(tj − y)v−1|G(y , U (y))|dy ,

≤
1

Γ(v)

[ ∫
ti

0
[(ti − y)v−1

− (tj − y)v−1]dy +

∫
tj

ti

(tj − y)v−1dy

]

(CH |U |+ MG),

≤
(CGU + MG)

Γ(v + 1)
[t

y

j − t
v
i + 2(tj − ti)

v ]. (9)

Next (9), we obtain ti → tj, and then

|$(U )(tj)− $(U )(ti)| → 0, as ti → tj.
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So, $ is equi-continuous in [0, t1]. Consider ti, tj ∈ [t1, T] in the sense of ABC as

|$(U )(tj)− $(U )(ti)| =

∣

∣

∣

∣

1 − v

ABC(v)
G(t , U (t)) +

v

ABC(v)Γ(v)

∫
tj

t1

(tj − y)v−1G(y , U (y))dy ,

−
1 − v

ABC(v)
G(t , U (t)) +

(v)

ABC(v)Γ(v)

∫
ti

t1

(ti − y)v−1G(y , U (y))dy

∣

∣

∣

∣

,

≤
v

ABC(v)Γ(v)

∫
ti

t1

[(ti − y)v−1
− (tj − y)v−1]|G(y , U (y))|dy

+
v

ABC(v)Γ(v)

∫
tj

ti

(tj − y)v−1|G(y , U (y))|dy ,

≤
v

ABC(v)Γ(v)

[ ∫
ti

t1

[(ti − y)v−1
− (tj − y)v−1]dy

+

∫
tj

ti

(tj − y)v−1dv

]

(CG|U |+ MG),

≤
v(CGU + MG)

ABC(v)Γ(v + 1)
[t v

j − t
v
i + 2(tj − ti)

v ]. (10)

If ti → tj, then

|$(U )(tj)− $(U )(ti)| → 0, as ti → tj.

Therefore, it can be concluded that the operator $ exhibits equi-continuity in the interval [t1, T], thus making

it an equi-continuous map. By applying the Arzelà-Ascoli theorem, it can be inferred that $ is uniformly

continuous, continuous, and bounded. Furthermore, based on the Schauder theorem, it can be established

that problem (3) has at least one solution in the subintervals.

Moreover, if the operator $ satisfies the condition of being a contraction mapping with assumption (C1),

then the proposed system possesses a unique solution. The mapping $ : B → B is characterized by being

piece-wise continuous, let us consider two elements U and Ū ∈ B on the interval [0, t1] in the sense of

Caputo, as follows:

∥$(U )− $(Ū )∥ = max
t∈[0,t1]

∣

∣

∣

∣

1

Γ(v)

∫ t

0
(t − y)v−1G(y , U (y))dy −

1

Γ(v)

∫ t

0
(t − y)v−1G(y , Ū (y))dy

∣

∣

∣

∣

,

≤
Tv

Γ(v + 1)
LG∥U − Ū ∥. (11)

From (11), we have

∥$(U )− $(Ū )∥ ≤
Tv

Γ(v + 1)
LG∥U − Ū ∥. (12)

Consequently, it follows that $ satisfies the contraction mapping condition. Thus, according to the Banach

fixed-point theorem, the problem at hand possesses a unique solution in the given subinterval. Additionally,

it is worth noting that t ∈ [t1, T] in the ABC sense:

∥$(U )− $(Ū )∥ ≤
1 − v

ABC(v)
LG∥U − Ū ∥+

v(T − Tv )

ABC(v)Γ(v + 1)
Lf∥U − Ū ∥, (13)
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or

∥$(U )− $(Ū )∥ ≤ LG

[

1 − v

ABC(v)
+

v(T − T)v

ABC(v)Γ(v + 1)

]

∥U − Ū ∥. (14)

This implies that $ satisfies the contraction mapping property. Consequently, the problem being considered

has a unique solution in the given sub-interval by virtue of the Banach fixed-point theorem. Therefore,

taking into account equations (12) and (14), it can be concluded that the proposed problem has a unique

solution on each sub-interval.

Analysis of stability

To prove the Ulam-Hyers stability for the considered model, we need to show that small perturba-

tions in the initial conditions or the parameters of the model result in small perturbations in the

solution of the model. This can be done by showing that the operator $ is Lipschitz continuous

with respect to the initial conditions or the parameters of the model.

Definition 6 The considered system (1) is said to be U-H stable if, for every ℵ > 0, the inequality holds

true.

∣

∣

∣

PCABCDv
t U(t)− f(t , U(t))

∣

∣

∣ < ℵ, f or all, t ∈ T , (15)

There exists a unique solution U ∈ Z that is constant A > 0,

∣

∣

∣

∣U − U
∣

∣

∣

∣

Z
≤ Aℵ, f or all, t ∈ T , (16)

Furthermore, if we consider an increasing function Ψ : [0,∞) → R+, the inequality described above can be

expressed as follows:

∣

∣

∣

∣U − U
∣

∣

∣

∣

Z
≤ AΨ(ℵ), f or each, t ∈ T ,

If Ψ(0) = 0, then the resulting solution is considered to be generalized U-H (G-H-U) stable.

Remark 1. Assuming that a function Ψ ∈ C(T ) does not depend on U ∈ W and satisfies Ψ(0) = 0,

we can conclude that:

|Ψ(t)| ≤ ℵ, t ∈ T
PCABCDv

t U(t) = f (t , U(t)) + Ψ(t), t ∈ T .

Lemma 1 Consider the function

PCABC
0 Dv

t U(t) = f(t , U(t)), 0 < v ≤ 1. (17)
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The solution of (17) is

U(t) =






U0 +
1

Γ(v)

∫ t

0
f(y , U(y))(t − y)v−1dy , 0 < t ≤ t1

U(t1) +
1 − v

ABC(v)
f(t , U(t)) +

v

ABC(v)Γ(v)

∫ t

t1

(t − y)v−1f(y , U(y))d(y), t1 < t ≤ T,

(18)

∣

∣

∣

∣F(U)− F(U)
∣

∣

∣

∣ ≤






T v
1

Γ(v + 1)
ℵ, t ∈ T1

[

(1 − v)Γ(v) + (Tv
2 )

ABC(v)Γ(v)

]

ℵ = Λℵ, t ∈ T2.

(19)

Theorem 1 The implication of Lemma (1) is that if
L f T

v

Γ(v)
< 1, the solution to model (2) is H-U stable as

well as G-H-U stable.

Proof 2 If U ∈ W is a solution of (2) and U ∈ W is also a unique solution of (2), then we can conclude

that

Case:1 for t ∈ T , we have

∣

∣

∣

∣U − U
∣

∣

∣

∣ = sup
t∈T

∣

∣

∣

∣

U −

(

U◦ +
1

Γ(v)

∫ t1

0
(t1 − y)v−1f

(

y , U(y)
)

dy

)∣

∣

∣

∣

,

≤ sup
t∈T

∣

∣

∣

∣

U −

(

U◦ +
1

Γ(v)

∫ t1

0
(t1 − y)v−1f

(

y , U(y)
)

dy

)∣

∣

∣

∣

+ sup
t∈T

∣

∣

∣

∣

+
1

Γ(v)

∫ t1

0
(t1 − y)v−1f (y , U(y)) dy −

1

Γ(v)

∫ t1

0
(t1 − y)v−1f

(

y , U(y)
)

dy

∣

∣

∣

∣

,

≤
T∞

v

Γ(v + 1)
ℵ+

L fT∞

Γ(v + 1)

∣

∣

∣

∣U − U
∣

∣

∣

∣ .

(20)

On more calculation

∣

∣

∣

∣U − U
∣

∣

∣

∣ ≤





T∞

Γ(v+1)

1 −
L f T∞

Γ(v+1)



ℵ. (21)

Case:2

∣

∣

∣

∣U − U
∣

∣

∣

∣ ≤ sup
t∈T

∣

∣

∣

∣

U −

[

U(t1) +
1 − v

ABC(v)
[f (t , U(t))]

+
v

ABC(v)Γ(v)

[∫ t

t1

(t − y)v−1f
(

y , U(y)
)

d(y)

]]∣

∣

∣

∣

+ sup
t∈T

1 − v

ABC(v)

∣

∣f (t , U(t))− f
(

t , U(t)
)∣

∣

+ sup
t∈T

v

ABC(v)Γ(v)

∫ t

t1

(t − y)v−1
∣

∣f (y , U(y))− f
(

y , U(y)
)∣

∣ ds.
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Using Λ =
[

(1−v)Γ(v)+Tv
2

ABC(v)Γ(v)

]

and further calculation we have

∣

∣

∣

∣U − U
∣

∣

∣

∣

W
≤ Λℵ+ ΛL f

∣

∣

∣

∣U − U
∣

∣

∣

∣

W
,

or

∣

∣

∣

∣U − U
∣

∣

∣

∣

W
≤





Λ

1 −
Λ

L f



ℵ. (22)

We use

A = max










T1
Γ(v+1)

1 −
L f T1

Γ(v+1)



 ,
Λ

1 −
ΛL f

1−M f





.

Now, from Eq. (21) and (22), we have

∣

∣

∣

∣U − U
∣

∣

∣

∣

W
≤ Aℵ, at every t ∈ T .

Thus, we can conclude that the solution to model (2) is H-U stable. Additionally, if we substitute ℵ with

Ψ(ℵ) in (23), we get:

∣

∣

∣

∣U − U
∣

∣

∣

∣

W
≤ AΨ(ℵ), at each t ∈ T .

Therefore, we can infer that the solution to our proposed model (2) is G-H-U stable based on the fact that

Ψ(0) = 0.

4 Numerical scheme

Here, we will find the numerical scheme for the considered system (2).






PCABC
0 Dv

t S(t) = S[r(1 −
S
k )−

βI
1+αS − p1Y],

PCABC
0 Dv

t I(t) = I( βS
1+αS − ω),

PCABC
0 Dv

t Y(t) = Y(−Y1 + C1p1S − p2Z),
PCABC
0 Dv

t Z(t) = −Y2Z + C2p2YZ + µ.

(23)

Using the piecewise-integral of Caputo and ABC derivative, we have
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S(t) =






S0 +
1

Γ(v)

∫t1
0 (t − y)v−1Cf1(t , S)dy 0 < t ≤ t1,

S(t1) +
1−v

AB(v)
f1(t , S)dy + v

AB(v)Γ(v)

∫t
t1
(t − y)v−1f1(t , S)dy t1 < t ≤ T,

I(t) =






I0 +
1

Γ(v)

∫t1
0 (t − y)v−1Cf2(t , I)dy 0 < t ≤ t1,

I(t1) +
1−v

AB(v)
f2(t , I)dy + v

AB(v)Γ(v)

∫t
t1
(t − y)v−1f2(t , I)dy t1 < t ≤ T,

(24)

Y(t) =






Y0 +
1

Γ(v)

∫t1
0 (t − y)v−1Cf3(t , Y)dy 0 < t ≤ t1,

Y(t1) +
1−v

AB(v)
f3(t , Y)dy + v

AB(v)Γ(v)

∫t
t1
(t − y)v−1f3(t , Y)dy t1 < t ≤ T,

Z(t) =






Z0 +
1

Γ(v)

∫t1
0 (t − y)v−1Cf4(t , Z)dy 0 < t ≤ t1,

Z(t1) +
1−v

AB(v)
f4(t , Z)dy + v

AB(v)Γ(v)

∫t
t1
(t − y)v−1f4(t , Z)dy t1 < t ≤ T.

At t = tn+1

S(t) =






S0 +
1

Γ(v)

∫t1
0 (t − y)v−1Cf1(t , S)dy 0 < t ≤ t1,

S(t1) +
1−v

AB(v)
f1(t , S)dy + v

AB(v)Γ(v)

∫tn+1
t1

(t − y)v−1f1(t , S)dy t1 < t ≤ T,

I(t) =






I0 +
1

Γ(v)

∫t1
0 (t − y)v−1Cf2(t , E)dy 0 < t ≤ t1,

I(t1) +
1−v

AB(v)
f2(t , I)dy + v

AB(v)Γ(v)

∫tn+1
t1

(t − y)v−1f2(t , I)dy t1 < t ≤ T,

Y(t) =






Y0 +
1

Γ(v)

∫t1
0 (t − y)v−1Cf3(t , I)dy 0 < t ≤ t1,

Y(t1) +
1−v

AB(v)
f3(t , Y)dy + v

AB(v)Γ(v)

∫tn+1
t1

(t − y)v−1f3(t , Y)dy t1 < t ≤ T,

Z(t) =






Z0 +
1

Γ(v)

∫t1
0 (t − y)v−1Cf4(t , Z)dy 0 < t ≤ t1,

Z(t1) +
1−v

AB(v)
f4(t , Z)dy + v

AB(v)Γ(v)

∫tn+1
t1

(t − y)v−1f4(t , Z)dy t1 < t ≤ T.

Using the Newton polynomials and some calculation, we have

S(tn+1) =






S0 +






(∆t)v−1

Γ(v + 1)

i∑

X=2

[C

f1(S
X−2, tX−2)

]

Π +
(∆t)v−1

Γ(v + 2)

i∑

X=2

[C

f1(S
X−1, tX−1)−

C f1(S
X−2, tX−2)

]

∧

+
v(∆t)v−1

2Γ(v + 3)

i∑

X=2

[C

f1(S
X, tX)− 2Cf1(S

X−1, tX−1) +
C f1(S

X−2, tX−2)

]

∆

S(t1) +






1 − v

ABC(v)
ABCf1(S

n, tn) +
v

ABC(v)

(δt)v−1

Γ(v + 1)

n∑

X=i+3

[ABC

f1(S
X−2, tX−2)

]

Π

+
v

ABC(v)

(v t)v−1

Γ(v + 2)

n∑

X=i+3

[ABC

f1(S
X−1, tX−1) + ABCf1(S

X−2, tX−2)

]

∧

+
v

ABC(v)

v(v t)v−1

Γ(v + 3)

n∑

X=i+3

[ABC

f1(S
X, tX)− 2ABCf1(S

X−1, tX−1) +
ABC f1(S

X−2, tX−2)

]

∆,

(25)
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I(tn+1) =






I0 +






(∆t)v−1

Γ(v + 1)

i∑

X=2

[C

f2(I
X−2, tX−2)

]

Π +
(∆t)v−1

Γ(v + 2)

i∑

X=2

[C

f2(I
X−1, tX−1)−

C f2(I
X−2, tX−2)

]

∧

+
v(∆t)v−1

2Γ(v + 3)

i∑

X=2

[C

f2(I
X, tX)− 2Cf2(I

X−1, tX−1) +
C f2(I

X−2, tX−2)

]

∆

I(t1) +






1 − v

ABC(v)
ABCf2(I

n, tn) +
v

ABC(v)

(δt)v−1

Γ(v + 1)

n∑

X=i+3

[ABC

f2(I
X−2, tX−2)

]

Π

+
v

ABC(v)

(v t)v−1

Γ(v + 2)

n∑

X=i+3

[ABC

f2(I
X−1, tX−1) + ABCf2(I

X−2, tX−2)

]

∧

+
v

ABC(v)

v(v t)v−1

Γ(v + 3)

n∑

X=i+3

[ABC

f2(I
X, tX)− 2ABCf2(I

X−1, tX−1) +
ABC f2(I

X−2, tX−2)

]

∆,

(26)

Y(tn+1) =






Y0 +






(∆t)v−1

Γ(v + 1)

i∑

X=2

[C

f3(Y
X−2, tX−2)

]

Π +
(∆t)v−1

Γ(v + 2)

i∑

X=2

[C

f3(Y
X−1, tX−1)−

C f3(Y
X−2, tX−2)

]

∧

+
v(∆t)v−1

2Γ(v + 3)

i∑

X=2

[C

f3(Y
X, tX)− 2Cf3(Y

X−1, tX−1) +
C f3(Y

X−2, tX−2)

]

∆

Y(t1) +






1 − v

ABC(v)
ABCf3(Y

n, tn) +
v

ABC(v)

(δt)v−1

Γ(v + 1)

n∑

X=i+3

[ABC

f3(Y
X−2, tX−2)

]

Π

+
v

ABC(v)

(v t)v−1

Γ(v + 2)

n∑

X=i+3

[ABC

f3(Y
X−1, tX−1) + ABCf3(Y

X−2, tX−2)

]

∧

+
v

ABC(v)

v(v t)v−1

Γ(v + 3)

n∑

X=i+3

[ABC

f3(Y
X, tX)− 2ABCf3(Y

X−1, tX−1) +
ABC f3(Y

X−2, tX−2)

]

∆,

(27)

Z(tn+1) =






Z0 +






(∆t)v−1

Γ(v + 1)

i∑

X=2

[C

f4(Z
X−2, tX−2)

]

Π +
(∆t)v−1

Γ(v + 2)

i∑

X=2

[C

f4(Z
X−1, tX−1)−

C f4(Z
X−2, tX−2)

]

∧

+
v(∆t)v−1

2Γ(v + 3)

i∑

X=2

[C

f4(Z
X, tX)− 2Cf4(Z

X−1, tX−1) +
C f4(Z

X−2, tX−2)

]

∆

Z(t1) +






1 − v

ABC(v)
ABCf4(Z

n, tn) +
v

ABC(v)

(δt)v−1

Γ(v + 1)

n∑

X=i+3

[ABC

f4(Z
X−2, tX−2)

]

Π

+
v

ABC(v)

(v t)v−1

Γ(v + 2)

n∑

X=i+3

[ABC

f4(Z
X−1, tX−1) + ABCf4(Z

X−2, tX−2)

]

∧

+
v

ABC(v)

v(v t)v−1

Γ(v + 3)

n∑

X=i+3

[ABC

f4(Z
X, tX)− 2ABCf4(Z

X−1, tX−1) +
ABC f4(Z

X−2, tX−2)

]

∆.

(28)

Here

Π =











(1 − X + m)v

(

2(−X + m)2 + (3v + 10)(−X + m) + 2v
2 + 9v + 12

)

− (−X + m)

(

2(−X + m)2 + (5v + 10)(m − X) + 6v
2 + 18v + 12

)











,
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∧

=











(1 − X + m)v

(

3 + n + 2v − X

)

− (−X + m)

(

m + 3v − X + 3

)











,

∆ =
[

(1 − X + m)v
− (−X + m)v

]

,

and

Cf1(S, t) = ABCf1(S, t) = S[r(1 −
S
k )−

βI
1+αS − p1Y],

Cf3(I, t) = ABCf3(I, t) = I( βS
1+αS − ω),

Cf2(Y, t) = ABCf2(Y, t) = Y(−Y1 + C1p1S − p2Z),
Cf4(Z, t) = ABCf4(Z, t) = −Y2Z + C2p2YZ + µ.

The above Eqs. (25)–(28) are the required solution for the aforementioned system.

5 Results and discussion

In this section we provide the numerical simulation of all four quantities of the considered

piecewise problem on different fractional orders using the data of Table 2 taken from [14]. We

also check the dynamics on two different intervals in the sense of Caputo and ABC fractional

operators. The biological interpretation and their explanation are given in the article [14]. Further,

the graphical results are simulated on different values lying between 0 and 1 which shows the total

density of each quantity in the form of a continuous spectrum. Furthermore, chaotic dynamics

are present in both divergent and convergent cases. All four quantities in the ecosystem oscillate

which shows the dependence of one quantity over another one. The piecewise simulation is also

provided on two subintervals the total time showing the sudden change dynamics or the crossover

behavior

Table 2. Parameters and their description in model (1)

Notations Numerical values - I Numerical Values - II

r 4.5 3.8

k 5 15

β 2 2

α 0.25 0.5

ω 1.6 1.6

d1 1 1

c1, c2 1, 1 1, 1

µ 1 1.24143

p1, p2 2,1 2,1

The graphical representation of the four compartments is given in Figures 1a-1d with chaotic

behaviors or phase portraits are given in Figures 1e-1f on different fractional orders using data

of Table 2 numerical values-I. The extra information is provided by the fractional operators by

taking extra orders lying between 0 and 1. For such data, the susceptible as well as infected plants

are fluctuated or oscillated along with the other two quantities of Herbivores having the same

dynamic. For this data, the said analysis is not converging faster as shown in the phase portrait

figures.
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Figure 1. Dynamics of all the four compartments, on different arbitrary fractional orders v = 0.75, 0.85, 0.95, 1

and time durations on any of the interval for the numerical value-I.

In figures 2a-2f, the graphical representation of the four compartments are given with chaotic

behaviors or phase portrait are given on different fractional orders using data of table 2 numerical

values-II. The extra information are provided by the fractional derivatives by taking extra orders

lies between 0 and 1. For such data the susceptible as well as infected plants are fluctuated or
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oscillating along with other two quantities of Herbivores having the same dynamics. But this time

the said analysis is converging faster as shown in the phase portrait figures.

0 50 100

T

0.6

0.8

1

1.2

1.4

1.6

S
(t

)

0.75

0.85

0.95

1

(a)

0 50 100

T

0

0.5

1

1.5

I(
t)

0.75

0.85

0.95

1

(b)

0 50 100

T

0.5

1

1.5

2

Y
(t

)

0.75

0.85

0.95

1

(c)

0 50 100

T

0.6

0.8

1

1.2

1.4

1.6

Z
(t

)

0.75

0.85

0.95

1

(d)

0.5
2

1

2

Y
(t

) 1.5

I(t)

1

S(t)

2

1
0 0

0.75

0.85

0.95

1

(e)

0.5
2

1

2

Z
(t

) 1.5

I(t)

1

S(t)

2

1
0 0

0.75

0.85

0.95

1

(f)

Figure 2. Dynamics of all the four compartments, on different arbitrary fractional orders v = 0.75, 0.85, 0.95, 1

and time durations on any of the interval for the numerical value-II.

In Figures 3a-3f, the graphical representation of the four compartments are given with chaotic
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behaviors or phase portrait are given on different fractional orders using data of table 2 numerical

values-I on two sub intervals showing the crossover behaviors. The extra information are provided

by the fractional derivatives by taking extra orders lies between 0 and 1. For such data the

susceptible as well as infected plants are fluctuated or oscillating along with other two quantities

of Herbivores having the oscillating dynamics. But this time the said analysis is not converging

faster as shown in the phase portrait figures.

In figures 4a-4d, the graphical representation of the four compartments are given with chaotic

behaviors or phase portrait are given on different fractional orders using data of table 2 numerical

values-I on two sub intervals showing the crossover behaviors. The more information are provided

by the fractional derivatives by taking extra orders lies between 0 and 1. For such data the

susceptible as well as infected plants are shifting in one another oscillating along with other two

quantities of Herbivores having the overlapping dynamics.
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Figure 4. Dynamics of all the four compartments, on different arbitrary fractional orders v = 0.99, 0.98, 0.97, 0.96

and time durations on any of two sub intervals [0, t1], [t1, t] for the numerical value-I showing the crossover

dynamics.

In figures 5a-5f, the graphical representation of the four compartments are given with one another

depending behaviors or phase portrait are given on different fractional orders using data of table 2
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Figure 3. Dynamics of all the four compartments, on different arbitrary fractional orders v = 0.99, 0.98, 0.97, 0.96

and time durations on any of two sub intervals [0, t1], [t1, t] for the numerical value-I.

numerical values-II on two sub intervals showing the crossover behaviors. The extra information

are provided by the fractional derivatives by taking extra orders lies between 0 and 1. For such

data the susceptible as well as infected plants are fluctuated or oscillating along with other two

quantities of Herbivores having the oscillating dynamics which converges faster as shown in the
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phase portrait figures.
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Figure 5. Dynamics of all the four compartments, on different arbitrary fractional orders v = 0.99, 0.98, 0.97, 0.96

and time durations on any of two sub intervals [0, t1], [t1, t] for the numerical value-II.
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6 Conclusion

Fractional-order differential equations with short memory play a crucial role in describing various

real-world problems. Based on this premise, the current work explores a four-compartmental

fractional-order plant model using the concept of piecewise derivative in both the Caputo and

ABC sense. The study has further successfully investigated for the existence results, uniqueness of

solution, and stability analysis of the considered problem, utilizing the fixed point concept and

nonlinear functional analysis tools. Substantial results were obtained and presented in this work.

The numerical solutions of the piecewise fractional model were computed using the Newton

Polynomial technique in this study. MATLAB-18 was utilized to depict the numerical results for

various fractional orders and time durations in this study. The results indicated that the piecewise

data provided additional information that described crossover dynamics for different fractional

orders. The graphical results obtained from both the piecewise and fractional order analysis were

found to be highly intriguing as such analysis are more informative and generalized in the contrast

of other relative work. The convergence and stability results are obtained by using fractional,

piece wise fractional aspects. Fractional operators are generalized because they have an extra

degree of freedom and choices. Therefore, we checked successfully the dynamics of different

fractional orders lying between 0 and 1, and compare them with the integer order. On small

fractional orders, stability is achieved quickly. Further, the piecewise fractional model is also

tested validly for the existence and uniqueness of the solution in the sense of fractional Caputo

and Atangana Baleanu operators having a kernel of non-singularity in the form of an exponential

function. The approximate or semi-analytical solution is obtained by the technique of piecewise

fractional Caputo and ABC derivative having the fractional parameter which shows the extra

degree of freedom. Taking different fractional orders, we have simulated the obtained scheme for

the first four terms. We also compare the fractional dynamics with the integer order dynamics.

All the quantities of the proposed problem are converging to their equilibrium points showing

spectrum dynamics with the removal of singularity as well as the crossover or abrupt dynamics.
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Abstract

The maintenance of free calcium in the cytoplasm is requisite for cell integrity and the regime of
the multi-cellular process. Overproduction and degradation to manage this cellular entity produce
offensive changes in tissue performance and as a result, commence fibrotic diseases. Thus, there
is a necessity to know the cellular process for the inclusion and extrusion of free calcium. Here, a
mathematical model is framed to investigate the role of buffer and calcium concentration on fibroblast
cells. In this context, the Caputo-Fabrizio advection reaction-diffusion model along with apposite
biophysical initial and boundary conditions is considered. The analytical solution is obtained and
used to analyze the diverse mechanisms of calcium on fibroblast cells. The obtained results reveal that
when the fractional order goes to one, the Caputo–Fabrizio fractional derivative provides a concise
calcium profile and well-managed cellular entity due to the exponential kernel law.

Keywords: Calcium concentration; buffer; fibroblast cells; fractional advection reaction-diffusion
equation; Caputo-Fabrizio fractional derivative

AMS 2020 Classification: 26A33, 35Q92, 35R11, 92B05, 97M10

1 Introduction

Fibroblast is non-excitable and heterogeneous structural cells whose primary function is the

production of extracellular matrix for tissue maintenance and repair. It plays a pivotal role in

maintaining tissue integrity, and in healing processes. They participate in fibrotic disorders in

the lung, skin, and other tissues. All these events are closely related to another mechanism in

cells, particularly with the signals from the local environment or extracellular medium and the

➤ Received: 18.03.2023 ➤ Revised: 18.04.2023 ➤ Accepted: 23.04.2023 ➤ Published: 30.04.2023

24

https://orcid.org/0000-0003-2014-3765
https://orcid.org/0000-0002-3966-6518
https://orcid.org/0000-0001-6723-2699


Joshi et al. | 25

calcium diffusion mechanisms [1]. Calcium ion acts as a messenger to perform all these functions

in fibroblasts cell. Fibroblast cell regulates calcium concentration at different levels in response to

the requirements for activation and performance of various physiological processes like wound

healing, tissue remodeling, and tissue growth. This calcium regulation mechanism and the calcium

concentration levels are required for cellular activities and their maintenance [2]. Therefore, it is

necessary to understand calcium regulation processes in fibroblast cells. This calcium regulation

mechanism involves processes like diffusion, advection, flux, and buffering phenomena.

Buffer binds the excess calcium present in the cell to form bound buffers and lower the calcium

concentration in the cell [3]. The calcium in excess of a limit for a longer span will be toxic and can

cause cell death [4]. On the requirement for a higher concentration of calcium for any physiological

process in fibroblast cells, these bound buffers release it to fulfill the requirement. Thus, the buffers

act as stores of calcium concentration and also perform functions like source and sinks to regulate

the concentration levels.

Experimental studies have shown that fibroblast shows excitability in particular growth stages.

The excitability of a cell is an important mechanism in calcium signaling since a strong interplay

exists between the membrane potential and the internal calcium concentration. The increase

in intracellular calcium associated with action potentials provides a mechanism for long-range

and fast-coordinated calcium signaling in excitable cells. Although in-excitable cells it has been

reported that fibroblast functions are unclear. Thus to fully understand the calcium regulation

mechanisms in fibroblast cells, it will be important to understand the local changes in calcium

levels.

Several theoretical investigations are reported in the literature to study calcium dynamics in

fibroblast cells [5, 6]. Also, some mathematical model has been developed in the literature to study

calcium dynamics in astrocyte [7–9], neuron [10–18], myocytes [19], oocyte [20, 21], T lymphocyte

[22, 23], cholangiocyte [24] and another cell. But, no attempt is reported in the literature to study

the effect of disturbances in intracellular calcium dynamic on fibroblast cells with an exponential

kernel law. In the view of above, here an attempt has been made to develop a mathematical

model to investigate the role of buffer and calcium concentration on fibroblast cells with the

Caputo-Fabrizio fractional operator. To the best of the author’s knowledge, no attempts are

registered to investigate the effect of calcium dynamics on fibroblast cells by using fractional

calculus approaches. Fractional derivative is a natural extension of classical derivative to study

differential equations with a memory-dependent derivative [25–30]. Fractional derivative provides

great freedom for the choice of order of derivative and thus illustrates the reality of complex

phenomena in a more understanding and expressive way [31–37]. In this attempt, we use the

Caputo-Fabrizio derivative due to its non-singular exponential kernel.

The structure of the paper is as follows: In Section 2, we introduce some mathematical prelimi-

naries. In Section 3, we developed the Caputo-Fabrizio advection reaction-diffusion model for

calcium dynamics in fibroblast cells. In Section 4, we present numerical simulations for various

physiological conditions of the calcium model. Finally, the conclusion is provided in section 5.

2 Mathematical preliminaries

In this section, some preliminaries are provided about the Caputo-Fabrizio fractional derivative

with a nonsingular kernel. According to [26], the formal definition of Caputo-Fabrizio fractional

derivatives is defined as follows:

Definition 1 Let f ∈ H1(x, y), with y > x, then the Caputo-Fabrizio derivative of function f (t) of order
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α ∈ [0, 1] is defined as

CFDα
t f (t) =

M(α)

1 − α

t∫

x

f ′(w) exp

[

−α
t − w

1 − α

]

dw, (1)

where M(α) is a normalization function and satisfies M(0) = M(1) = 1.

If f /∈ H1(x, y), then the derivative of function f (t) is defined as

CFDα
t f (t) =

αM(α)

1 − α

t∫

x

( f (t)− f (w)) exp

[

−α
t − w

1 − α

]

dw. (2)

Remark 1 If β = 1−α
α ∈ [0,∞), α = 1

1+β , then the equation (2) can be modified as

CFDα
t f (t) =

N(α)

α

t∫

x

f ′(t) exp

[

−

t − w

β

]

dw, (3)

where N(0) = N(∞) = 1. Moreover,

lim
β→0

(

1

α
exp

(

−

t − w

β

))

= δ(w − t). (4)

According to [38], the Caputo-Fabrizio integral is defined as follows:

Definition 2 The Caputo-Fabrizio integral of function f (t) of order α ∈ [0, 1] and t ≥ 0 is defined as

CF Iα
t f (t) =

2(1 − α)

(2 − α)M(α)
f (t) +

2α

(2 − α)M(α)

t∫

0

f (s)ds. (5)

Further simplification gives us as

2(1 − α)

(2 − α)M(α)
+

2α

(2 − α)M(α)
= 1. (6)

3 Mathematical model and solution

The mathematical model includes diffusion of calcium and buffer in calcium signaling phenomena.

The process occurs inside the plasma membrane of the cells. The calcium kinetics in fibroblast

cells is governed by a set of advection reaction-diffusion equations in the form of a bimolecular

reaction between Ca2+ and buffer [3, 39, 40].

[

Ca2+
]

+ [B]
k+⇔
k−

[CaB] . (7)
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The remaining reaction-diffusion equations can be derived using Fickian diffusion as [39, 40]

∂
[

Ca2+
]

∂t
= DC · ∇2

[

Ca2+
]

+
∑

k

Rk, (8)

∂ [B]

∂t
= DB · ∇2 [B] + Rk, (9)

∂ [CaB]

∂t
= DCB · ∇2 [CaB]− Rk, (10)

where Rk = −k+ [B]
[

Ca2+
]

+ k− [CaB] , known as the reaction term and DK is the diffusion

coefficient for the respective entity. Although, the buffer do not capable to diffuse with other entity

is considered a stationary buffer and mathematically described by setting DB = DCB = 0. Now,

including equations (7-10) the mathematical model is become as

∂u

∂t
= Dc

∂2u

∂x2
− v

∂u

∂x
− k+ · [B]∞ (u − u∞) , (11)

where u = [Ca2+].

The apposite biophysical initial condition is defined as

u(x, 0) = u∞, x > 0, (12)

and the boundary conditions are

u(0, t) = u0, t > 0,
∂u

∂x
= 0, x → ∞, t > 0. (13)

For simplicity, we replaced u − u∞ = u and k+ · [B]∞ = f then the mathematical model is

rearranged as

∂u

∂t
= Dc

∂2u

∂x2
− v

∂u

∂x
− f u. (14)

The apposite biophysical initial and boundary conditions are modified as

u(x, 0) = 0, x > 0,

u(0, t) = u∞ − u0, t > 0, ∂u
∂x = 0, x → ∞, t > 0.

(15)

The non-dimensional calcium model is formulated by introducing the dimensionless variables

x∗ = x

√

f

DC
, t∗ = f t, u∗ =

u

u0
, k =

v
√

f DC

.
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Hence, equation (14) turns out to be the following equation as

∂u

∂t
=

∂2u

∂x2
− k

∂u

∂x
− u, (16)

and the corresponding conditions are

u(x, 0) = 0, x > 0,

u(0, t) = u∞ − u0, t > 0, ∂u
∂x = 0, x → ∞, t > 0.

(17)

Next, we defined a new solute concentration u(x, t) = exp
(

kx
2

)

γ(x, t) and it is easy to verify that

γ(x, t) satisfies the following non-dimensional calcium problem.

∂γ

∂t
=

∂2γ

∂x2
−

(

k2

2
+ 1

)

γ. (18)

For simplicity, we replaced
(

k2

2 + 1
)

= ξ2. Finally, the calcium model is formulated as follows

∂γ

∂t
=

∂2γ

∂x2
− ξ2γ, (19)

and the corresponding conditions are

γ(x, 0) = 0, x > 0,

γ(0, t) = u0 − u∞, t > 0, γ(x, t) = 0, x → ∞, t > 0.
(20)

Now we convert the calcium model into the Caputo-Fabrizio sense to improve the accuracy and

introduce a memory and hereditary behavior of cells. Thus the Caputo-Fabrizio calcium model

for fibroblast cells is represented as follows:

CFDα
t γ(x, t) =

∂2γ

∂x2
− ξ2γ. (21)

Applying the Laplace transform on equation (21), we obtain the following transformed problem as

sγ̄(x, s)− γ(x, 0)

(1 − α)s + α
=

∂2γ̄(x, s)

∂x2
− ξ2γ̄(x, s), (22)

where γ̄(x, s) is the Laplace transformation of γ(x, t).

Next, applying the Fourier sine transform on equation (22), the transformed problem is recast as

ŝ̄γ(w, s)

(1 − α)s + α
= −w2̂γ̄(w, s) + wγ̄(0, s)− ξ 2̂γ̄(w, s), (23)

whereˆ̄γ(w, s) is the Fourier sine transform of γ̄(x, s). By using equation (20) we obtain as

ŝ̄γ(w, s)

(1 − α)s + α
= −w2̂γ̄(w, s) + w(u0 − u∞)− ξ 2̂γ̄(w, s). (24)
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By simple rearrangement give us the following expression

ˆ̄γ(w, s) =
w(u0 − u∞)

w2 + m + ξ2
+

αm2w(u0 − u∞)

(w2 + m + ξ2)
2

1

s + αm(w2+ξ2)
w2+m+ξ2

, (25)

where m = 1/(1 − α). Next, by inverting the Laplace and Fourier transform of equation (25), we

have

γ(x, t) = 2(u0−u∞)δ(t)
π

∞∫

0

w sin(wx)
w2+m+ξ2 dw

+ 2(u0−u∞)
π

∞∫

0

αm2w sin(wx)

(w2+m+ξ2)
2 exp

(

αm(w2+ξ2)t
w2+m+ξ2

)

dw.
(26)

By using the relation

∞∫

0

w sin(wx)

w2 + b2
dw =

π

2
e−bx. (27)

Equation (26) turns out to be

γ(x, t) = (u0 − u∞)δ(t) exp
(

−x
√

m + ξ2
)

+ 2(u0−u∞)
π

∞∫

0

αm2w sin(wx)

(w2+m+ξ2)
2 exp

(

αm(w2+ξ2)t
w2+m+ξ2

)

dw.
(28)

Then by transforming equation (28) to the original coordinate system, we get the calcium concen-

tration in fibroblast cells at any instant as

u(x, t) = (u0 − u∞)δ(t) exp
(

−x
√

m + ξ2 + kx
2

)

+ 2(u0−u∞)
π exp

(

kx
2

)∞∫

0

αm2w sin(wx)

(w2+m+ξ2)
2 exp

(

−

αm(w2+ξ2)t
w2+m+ξ2

)

dw.
(29)

Limiting case of the model (Caputo-Fabrizio order α → 1)

The classical solution of the calcium model is obtained here as a special case or limiting case of the

Caputo-Fabrizio calcium model by approaching α → 1.

When α → 1 we have,

γ(x, t) = lim
α→1

2(u0−u∞)
π

∞∫

0

αm2w sin(wx)

(w2+m+ξ2)
2 exp

(

−

αm(w2+ξ2)t
w2+m+ξ2

)

dw

=
2(u0 − u∞)

π

∞∫

0

w sin(wx) exp
(

−(w2 + ξ2)t
)

dw.
(30)

Then by using equation (30), equation (29) rearrange as follows

γ(x, t) =
(u0 − u∞)

2
√

π

x

t
√

t
exp

(

−ξ2t −
x2

4t

)

, (31)
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and again by transforming equation (31) to the original coordinate system, we get the calcium

concentration in fibroblast cells for the classical case as

u(x, t) =
(u0 − u∞)

2
√

π

x

t
√

t
exp

(

−ξ2t −
x2

4t
+

kx

2

)

. (32)

4 Numerical results and discussion

In this section, we portrayed the spatial and temporal calcium concentration in fibroblast cells for

various amounts of buffer, diffusion coefficient, advection flux, and Caputo-Fabrizio derivative.

The numerical values of a bio-physiological parameter used to simulate the result are provided in

Table 1.

Table 1. Values of bio-physiological parameters [3, 5, 40]

Symbol Parameter Value

DC Diffusion coefficient 260-400 µm2/s

[Bm] Buffer concentration 60-200 µM

k+ (EGTA) Buffer association rate 1.6-30 µM−1s−1

k+ (BAPTA) Buffer association rate 600-900 µM−1s−1

[Ca2+]∞ Background Ca2+ concentration 0.1 µM

v Advection flux 0-30 µm/s
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Figure 1. Calcium concentration against time for various orders of Caputo-Fabrizio derivative

Figure 1 shows the calcium concentration in a fibroblast cell against time for diffusion coefficient

290 µm2/s, advection flux 10 µm/s, and EGTA buffer 1.6 µM. The highest concentration is ob-

served near the source then it decreases to reach its equilibrium conditions. This happened near

the source as free calcium reacted with the buffer and made a calcium-bound buffer. As a result,

the sharp fall is observed after 0.5 seconds and it shows the notable role of a buffer up to 0.5

seconds. Also, the kernel of the Caputo-Fabrizio derivative plays a significant role due to the

exponential kernel law and forces the calcium profile to early achieved stable conditions.
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Figure 2. Calcium concentration against distance for various orders of Caputo-Fabrizio derivative

Figure 2 shows the calcium concentration in a fibroblast cell against distance for diffusion coeffi-

cient 290 µm2/s, advection flux 10 µm/s, and EGTA buffer 1.6 µM. The highest concentration is

observed near the source then subtle rises due to the entry of buffer affinity and then decreases

gradually to reach its equilibrium conditions. The sharp fall is observed after 20 µm, and it shows

the notable role of buffer in the initial stage of cellular activities. As Caputo-Fabrizio derivative

moves to integer order, the calcium concentration is increasing then finally achieved stable con-

ditions. Figures 1 and 2 show the significant role of the Caputo-Fabrizio derivative due to the

exponential kernel law and hence Figures 3-10 are produced only for Caputo-Fabrizio fractional

order α = 0.9.
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Figure 3. Calcium concentration against time for various amounts of EGTA buffer
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Figure 4. Calcium concentration against distance for various amounts of EGTA buffer

Figures 3 and 4 show the calcium concentration in a fibroblast cell against time and space respec-

tively. The bio-physiological parameters used to simulate the result are the same as listed above.

Here, we examine the effect of EGTA buffer over time and space. From the figures, we confirmed

that as the value of buffer increases calcium concentration initiates to decrease due to the free

buffer binds with free calcium.
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Figure 5. Calcium concentration against time for various amounts of BAPTA buffer
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Figure 6. Calcium concentration against distance for various amounts of BAPTA buffer

Figures 5 and 6 show the calcium concentration in a fibroblast cell against time and space respec-

tively. Here, we examine the effect of BAPTA buffer over time and space. From the figures, we

confirmed that as the value of the buffer increases calcium concentration decrease. Also, it is

observed that calcium concentration is dramatically reduced as compared to EGTA buffer due to

the association rate of BAPTA buffer.
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Figure 7. Calcium concentration against time for various diffusion coefficient
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Figure 8. Calcium concentration against distance for various diffusion coefficient

Figures 7 and 8 show the calcium concentration in a fibroblast cell against time and space for

various diffusion coefficients. From the figures, we confirmed that as the value of diffusion

coefficients increases calcium concentration decreases and hence it plays a dual role in the absence

of buffer and contributes to managing cellular activities.
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Figure 9. Calcium concentration against time for presence and absence of advection flux
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Figure 10. Calcium concentration against distance for presence and absence of advection flux

Figures 9 and 10 show the calcium concentration in a fibroblast cell against time and space for

the presence and absence of advection flux. From the figures, we confirmed that the presence of

flux significantly rise the calcium concentration and is thus involved in cellular activities such as

secretion, cell integrity, and so on.

5 Conclusion

We analyzed the effect of disturbances in intracellular calcium dynamic on fibroblast cells with

the Caputo-Fabrizio advection reaction-diffusion equation. The analytical solution is derived

by use of Laplace and Fourier transform techniques. Also, the limiting case of the model is

obtained by setting the Caputo-Fabrizio fractional operator to unity. Numerical simulation is

presented for various physiological conditions to study calcium diffusion in a fibroblast cell. This

approach provides us with a comparably good approximation of the complex geometry of the

cell including various biophysical parameters like buffer, diffusion coefficient, and advection

flux. The results imply that buffer concentration, the binding affinity of EGTA and BAPTA,

the presence and absence of advection flux, and the Caputo-Fabrizio fractional operator has a

significant effect on calcium concentration in fibroblast cells. Moreover, the results shown here are

in agreement with the physiological facts and hence they play an important role in generating

specific calcium concentration patterns necessary for activation, continuation, and termination of

fibroblast during wound healing, fibrotic diseases, and cardiovascular disease. Recently, there are

many new fractional derivatives introduced such as the generalized fractional derivative known

as the Abu-Shady-Kaabar fractional derivative. This fractional derivative can work and obtain

the same results as other well-known fractional derivatives in a very simple way. Therefore, it

is a good direction for future research works to study the present problem in the sense of the

Abu-Shady Kaabar fractional derivative.
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Abstract

The α-cells are a part of islets of Langerhans located in the pancreas and are responsible for glucagon
secretion. Calcium signaling is crucial for the regulation of the functions and structure of these α-cells
and the same is still not well understood. Here a mathematical model is framed to obtain more insights
into calcium signaling in α-cells. The non-linear reaction-diffusion equation for calcium signaling
along with boundary conditions is employed to propose the model for a one-dimensional steady-state
case. The numerical solutions were obtained using the Newton-Raphson method and the cubic spline
method. The combination of Newton-Raphson and cubic spline has proved to be quite effective in
numerical simulations and in generating deeper insights into calcium regulation in an α-cell under
various conditions. The results provide information about changes in source influx, buffers, ER leak,
and SERCA pump leading to disturbances in calcium homeostasis, which can be responsible for the
development of diabetes and other metabolic disorders.

Keywords: Cubic spline method; Newton-Raphson method; calcium distribution; ER leak; SERCA
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1 Introduction

In order to maintain normal physiology and metabolism, calcium homeostasis mechanisms

regulate ionized plasma calcium (Ca2+) concentration in the human body within a specific range.

The cytosolic calcium is kept at a very low-level [1]. The cytosolic calcium level can rise by releasing

calcium from intracellular reserves and bringing calcium in from external sources. The calcium

level within the α-cell regulates biophysical processes like the formation and secretion of glucagon

hormone [2]. The free calcium level inside the α-cell is maintained at 0.1 µM under resting

conditions. The α-cells have pyramidal shape and size about 8 µm in diameter and they appear in

groups [3]. Due to the electrically excitable nature, the α-cells continuously generate overshooting

action potentials when the release of glucagon is induced at a low concentration of glucose.
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Voltage-gated Na+ and Ca2+ channels are crucial for the upstroke of action potentials. Voltage-

gated Ca2+ channels (VGCCs) are opened by the discharge of high-voltage action potentials

allowing extracellular calcium to enter the cytosol. As a result, the number of intracellular

calcium rises, which triggers the glucagon granule exocytosis process thereby leading to the

fusion of hormone-containing granules with cell membranes and the secretion of the hormones

contained inside. Glucagon secretion is inhibited as blood glucose levels rise. This is most likely

accomplished via a decrease in the activity of P/Q-type calcium channel of α-cells and by SERCA

pump, which stimulates Ca2+-sequestration into the ER [4]. In stable conditions, the glucose level

lies between 70 to 180 mg/dl, i.e., normoglycemia. If it falls below 70 mg/dl, the body experiences

hypoglycemia. The pancreatic α-cells then secrete glucagon, which causes the liver to release

glucose back into the bloodstream, stabilizing its concentration. Contrarily, hyperglycemia occurs

when blood sugar levels rise above 180 mg/dl. The pancreatic β-cells then secrete insulin, which

causes fatty tissue to absorb glucose to bring the blood sugar level back to normal [5]. A lot of

similar secretory machinery has been found in β and α-cells [6]. Disruptions in these mechanisms

are the key factor in the growth of diabetes, which is commonly divided into two categories:

Type-1 diabetes and Type-2 diabetes [5].

Many researchers and scientists have developed a variety of mathematical models for studying

calcium signaling in different cells like myocytes [7–11], neurons [12–26], astrocytes [27–31],

hepatocytes [32–34], fibroblasts [35–38], lymphocytes [39, 40], oocytes [41–48], acinar cells [49–51],

dendritic spines [52], etc. In order to understand the kinetics of calcium signaling in endothelial

cells, Wiesner et al. [53] constructed a model which gives a mathematical explanation of how

calcium affects the ability of the endothelial cell to transmit signals. A mathematical model was

created by Handy [27] to investigate the effects of calcium pumps, channels, ER leak, SERCA,

and other elements on calcium dynamics in astrocytes. They proposed that modifications to this

parameter’s ratio had a direct impact on the cytosolic calcium levels in astrocyte cells. The calcium

dynamics in a neuron have been examined by Futagi and Kitano [54]. They computationally

analyzed the effect of the ryanodine receptor and how it can cause the fluctuation in the calcium

profile. Proposing a finite element model, Tewari and Pardasani [19–23] demonstrated calcium

distribution in neurons. They considered a number of buffers, including EGTA, BAPTA, Troponin,

and Calmodulin for their study. A mathematical model has been created by Jha et al. [28–31] to

investigate the calcium advection and diffusion phenomenon in astrocytes. This model includes

an advection-diffusion equation, suitable boundary conditions, and physiological factors like

diffusion coefficient, buffers and VGCC. To acquire the numerical results, they used the finite

element method. Naik and Pardasani [41–46] used the same technique to investigate the calcium

distribution in oocyte cells while buffer, VGCC, and receptor were present. Due to these variables,

they saw a considerable variation in calcium profiles. Pathak and Adlakha [7–9] investigated the

finite element model in order to confirm the physiological mechanism of calcium homeostasis in

myocytes by considering factors such as a leak, pump and excess buffer. They discovered that

while leaks help to increase calcium concentration, buffers are important to lower it. In recent

years, some advancements have also been made by researchers in the field of computational

modeling. Joshi and Jha [55, 56] considered the fractional reaction-diffusion equation to study

the physiological phenomenon in depth in neurons. Additionally, they expanded their model to

a two-dimensional study and correlated the findings with the physiology of neurodegenerative

disorders [57, 58].

Nowadays, it is commonly acknowledged that insufficient pancreatic hormone secretion is the

major cause of the emergence of diabetes [59]. Impaired insulin profile has been the main topic

of study these days. Several computational and theoretical studies have been devoted to the
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exocytosis and electrical behavior of β-cell [60, 61], but there is relatively little information available

regarding the modeling of the calcium signaling in pancreatic α-cell. Diderichsen and Gopel [62]

established a mathematical model of electrical activity based on the ion channel properties of

α-cells found on the surface of healthy mouse islets in 2006. Additionally, their model was revised

by Watts and Sherman [6] in 2014 to include calcium dynamics and secretion. Similar findings of

secretion, calcium dynamics and electrical activity were described theoretically by Fridlyand and

Philipson [63] in 2012. Exocytosis and secretion were mostly analyzed [6, 62, 63] as an impact of

electrical activity, although the primary goal was on the modulation of α-cell electrical activity. A

mathematical model was constructed by Montefusco and Pedersen [64] to test the α-cells electrical

activity modulations that result in glucose administration. They describe the intracellular calcium

profile with a focus on simulating calcium concentrations in the microdomains implicated in the

release of glucagon. Briant et al. [4] investigated the mechanisms behind metabolic regulation

of glucagon secretion of α-cells with the help of a mathematical model. They also examined

the paracrine and intrinsic mechanisms of α-cells. Brereton et al. [65] in their work concluded

that inter-islet communication is restored by both islet architecture and cellular functions. It

is also responsible for glucose homeostasis in diabetes. González-Vélez et al. [2] investigated

the importance of calcium and glucose maintaining the secretion of glucagon hormone through

α-cells. They also established that the secretion of glucagon is potentiated by calcium variation

in comparison to a constant level of intracellular calcium. The model emphasized the exocytosis

of α-cell and gave the tools helping in the study of modulators involved in glucagon secretion.

Moede et al. [66], in their research work, gave the relationship of α and β-cells. Their main focus

was the hormones secreted by α-cells, such as acetylcholine and glucagon. The inter-relationship

of α and β-cells is affected by different architectures of the islet in various species.

From the literature survey, it can be observed that glucagon secretion is responsible for maintaining

the glucose level and it depends on the calcium signaling of the cells. Most of the studies found in

the literature are based on either the electrical activity of the α-cells [6, 62, 63] or they describe the

metabolic regulation of glucagon secretion theoretically [2, 4]. On the other hand, several attempts

have been made to solve the linear form of the reaction-diffusion model for the other cells using

different mathematical techniques like FEM and FVM [23, 31, 32, 46]. It has been noted that no

attempts have been made to analyze the non-linear calcium distribution involving SERCA pump

and ER leak in an α-cell. Furthermore, little is known about how numerous factors including

diffusion, influx, the SERCA pump and ER leak affect calcium signaling in α-cells. The previous

studies on calcium signaling in various cells with the help of the finite element method used linear

interpolation functions which required a large number of elements to achieve the desired accuracy.

In the present paper, the above-mentioned issues are addressed by developing a mathematical

model of calcium signaling in an α-cell. The non-linear reaction-diffusion equation along with

boundary conditions is employed to construct a model in the form of a boundary value problem.

The numerical results are calculated by using the combination of the cubic spline method and

the Newton-Raphson method. The cubic spline method is employed to obtain an approximation

of the field variable in the cell domain. The Newton-Raphson approach has been implemented

to effectively obtain the numerical solution of the non-linear equations. The way the study is

performed is as follows: the steady state distribution of calcium in an α-cell is modeled by a

non-linear reaction-diffusion equation in Section 2. In Section 3, the calcium profile for various

physiological parameters is discussed. Section 4 completes our discussion with conclusions.

Finally, in Section 5, the algorithms of the cubic spline method and Newton-Raphson method are

given.
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2 Construction of the mathematical model

The proposed model incorporates two mechanisms of calcium influx due to an ER leak and

outflow caused by the SERCA pump. We begin by assuming a single well-mixed pool (like the

cytoplasm of the α-cell) where a bimolecular association interaction of calcium and buffer takes

place. The calcium-buffer binding and unbinding equation is given by [67, 68]:

Ca2+ + B
k+

⇋

k−
CaB, (1)

where Ca2+, B and CaB denote the free calcium, free buffer and calcium-bound buffer respectively.

The terms k+ and k− are the rate constants for association and dissociation, respectively.

The required equation for analyzing the calcium regulation in an α-cell is given as follows [61, 64,

67, 68]:

∂[Ca2+]

∂t
= DCa∇

2[Ca2+]− k+i [Bi]∞([Ca2+]− [Ca2+]∞) + Jleak − JSERCA, (2)

where DCa is the diffusion coefficients of free Ca2+ and Jleak and JSERCA represent the ER leak and

SERCA pump flux, respectively and given as follow:

Jleak = PER([Ca2+]ER − [Ca2+]), (3)

where PER leak permeability out of the ER and [Ca2+]ER is the free calcium concentration in ER.

JSERCA = Pmax
SERCA

[Ca2+]2

k2
pump + [Ca2+]2

, (4)

where Pmax
SERCA and kpump are the maximum pumping rate and half maximum pump activity of

SERCA pump, respectively [64, 69].

For one-dimensional steady-state case in cartesian coordinates, the equation (2) is given by:

∂2[Ca2+]

∂x2
−

k+[B]∞
DCa

([Ca2+]− [Ca2+]∞)+
PER

DCa
([Ca2+]ER − [Ca2+])−

Pmax
SERCA

DCa

[Ca2+]2

k2
pump + [Ca2+]2

= 0.

(5)

The source term of the calcium is assumed at the point x=0 µm, thus the flux boundary is given as

follows [68]:

lim
x→0

(

−DCa
∂[Ca2+]

∂x

)

= σCa. (6)

The other end boundary is assumed at the resting state i.e., the background calcium concentration

is assumed at that point and expressed as follows:

lim
x→∞

[Ca2+] = 0.1µM. (7)
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Re-writing equation (5), we get:

∂2y

∂x2
− Ay − B

y2

k2
pump + y2

+ C = 0, (8)

where

A =
k+[B]∞ + PER

DCa
,

B =
Pmax

SERCA

DCa
,

C =
k+[B]∞[Ca2+]∞ + PER[Ca2+]ER

DCa
,

and y denotes the [Ca2+]. In past studies, various research workers have used the finite element

method with linear interpolation functions. The linear interpolation functions give linear ap-

proximation within each subdomain/interval giving a polygonal curve for the field variable as

an approximation to a real/smooth curve within the whole domain/cell. Therefore to achieve

good approximation the smaller step size is taken to discretize the domain in a larger number of

elements/intervals to make a polygonal curve very close to the smooth curve of the field variable

in the domain/cell to achieve good accuracy. Here the cell size is very small i.e. few microns.

Further, the cubic splines are superior to linear interpolation as it satisfies higher-order continuity

conditions to give smooth curves and its order of approximation is higher than the order of

approximation of linear interpolation functions. Thus, we have two options to achieve good

approximation: (i) Use linear interpolation functions and take a smaller step size to divide the

domain into a larger number of intervals/elements or (ii) Use higher order interpolation functions

like cubic splines and divide the domain in a smaller number of intervals/elements. The first

option requires a larger number of elements which in the case of the nonlinear system becomes

very complicated and requires large computational efforts. The second option of using cubic

splines requires a smaller number of elements leading to a smaller number of nonlinear equations

thereby reducing complications and requiring less computational effort but more mathematical

manipulations. Here we use the second option and discretize the cell into eight equal elements to

obtain better results by solving a more realistic model. The cubic spline method [70, 71] has been

applied to solve the model given by equation (8) and the boundary conditions equation (6) and

(7). Thus, equations for the internal nodes are given as follows:

h

6
Nj−1 +

2h

3
Nj +

h

6
Nj+1 =

yj+1 − 2yj + yj−1

h
, (9)

where

Nj = Ayj + B
y2

j

k2
pump + y2

j

− C, (10)
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where j = 1, 2, 3, · · · , 7 and h = xj − xj−1.

Substituting the value of equation (10) in equation (9) and after rearranging, we get:

(

Ah

6
−

1

h

)

yj−1 + 2

(

Ah

3
+

1

h

)

yj +

(

Ah

6
−

1

h

)

yj+1

+
Bh

6

(

y2
j−1

k2
pump + y2

j−1

+ 4
y2

j

k2
pump + y2

j

+
y2

j+1

k2
pump + y2

j+1

)

− Ch = 0,

(11)

where j = 1, 2, 3, · · · , 7.

Condition for the right boundary is obtained by using equation (7):

y8 − 0.1 = 0. (12)

Applying the cubic spline method on equation (6), the condition for the left boundary is given as

follows:

−

h

3
Nj −

h

6
Nj+1 +

yj+1 − yj

h
= −

σCa

DCa
, (13)

N0 =
3

h2
(y1 − y0)−

1

2
N1 +

3

h

σCa

DCa
. (14)

Combining equations (11), (12) and (14), a non-linear system of 9 equations has been obtained. A

MATLAB program of the Newton-Raphson method for the nonlinear system has been developed

to solve the obtained system. In Table 1, biophysical parameters and corresponding numerical

data are presented.

Table 1. Biophysical parameters and numerical data [64, 68, 69]

Notation Name of the parameter Numerical value

DCa Diffusion Coefficient 250 µm2/sec

K+ Association rate of EGTA 1.5 µM/sec

B∞ EGTA 5 µM

PER Calcium leak permeability of ER 0.0001 /sec

Pmax
SERCA Maximum pumping rate of SERCA 0.105 µM/sec

kpump Half-maximum pumping rate of SERCA 0.5 µM

[Ca2+]∞ Cytosolic calcium at rest 0.1 µM

[Ca2+]ER Calcium concentration in ER 22.8 µM

σCa Source influx 15 pA

3 Results and discussion

The data of the parameters listed in Table 1 were used to compute numerical solutions. The

profiles for calcium concentration with respect to space for different conditions have been plotted.

Figure 1 depicts the cytosolic calcium of the α-cell with respect to space. It can be observed from

the figure that concentration is initially high near the source influx and then gradually drops as

we move away from the source. However, at the other end, it attains its equilibrium value which

is 0.1 µM. Active pumps and buffers within the α-cell were the cause of the change in calcium

concentration with regard to space.
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Figure 1. Calcium concentration for standard values of parameters given in Table 1
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The spatial variation in calcium concentration as the diffusion coefficient values change from 150

to 200 and 200 to 250 µm2/sec is shown in Figure 2. The diffusion coefficient is defined as the

amount of diffusing substance moved per unit area per unit of time from one portion of the cell

to another. This indicates that calcium ions will flow quickly from the apical to the basal portion

of the cell for a larger value of DCa. For DCa = 250 µm2/sec, less free calcium accumulates in

the space as more calcium is carried through the cell. Therefore, the concentration of calcium

decreases as the magnitude of the diffusion coefficient increases. The amount of free calcium is

clearly inversely proportional to the diffusion coefficient, as seen in the graph.
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Figure 3. Calcium concentration for different values of source influx

The spatial change in calcium concentration when the value of source amplitude σCa is 1, 15 and

30 pA respectively is shown in Figure 3. The unit of characteristic amplitude current passing

through a channel is pico amperes (pA). The open channel permits ions to pass and is measured

as current. As the source amplitude’s value increases, more calcium is released into the cytosol.

Thus it leads to an increase in the concentration of free calcium. It can be seen from Figure 3

that the concentration of calcium is 1.1, 1.3 and 1.5 µM respectively for 1, 15 and 30 pA source

amplitude at the mouth of a point source and thereafter it decreases uniformly up to 0.1 µM. The

appropriate experimental results are still not available for comparison, but however, the outcomes

of the suggested model are consistent with biological facts.

Figure 4 represents the spatial change in calcium profile for various EGTA buffer quantities. It

can be noticed that different quantities of buffers have different effects on the calcium profile.

The maximum calcium concentration occurs for EGTA = 10 µM and the minimum calcium

concentration occurs for EGTA = 50 µM. In all three EGTA buffers above with different quantities,

the concentration of calcium decreases with an increase in the concentration of cytosolic buffer

inside the α-cell.

Figure 5 demonstrates the effect of different pumping rates on the calcium concentration inside

the α-cell. The graph shows three different pumping rates. When the pumping rate Pmax
SERCA is 0.1

µM/sec, the cytosolic calcium is higher and the concentration begins to decline as the pumping

rate increases. Calcium concentration also decreases with an increase in the distance of the cell

from the source.
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Figure 6. Calcium concentration for different values of ER leak

Figure 6 demonstrates the effect of different leak rates (PER). Here with an increase in the distance

from the source of the cell, the calcium concentration inside the cell decreases. The gaps observed

among the curves in the figure indicate that leak helps in raising the cytosolic calcium with the

increase in leak rate. The figure also shows how altering the leak rates causes variations in calcium

concentration.

4 Conclusion

A one-dimensional steady-state model for calcium distribution has been proposed and effectively

used to examine the roles of different factors like EGTA buffers, source influx, leak, pump, etc.

on the cytosolic calcium concentration of the α-cell. The combination of the cubic spline and

Newton-Raphson method has proved to be effective for solving non-linear reaction-diffusion and

performing numerical simulations to obtain valuable results. The following conclusions have been

drawn:

i. The buffers and pumps are crucial in lowering calcium levels in an α-cell.

ii. The source influx and leak are crucial in raising the calcium concentration in an α-cell.

iii. The cell has a beautiful mechanism for balancing this calcium concentration by elevating and

reducing mechanisms to regulate the calcium concentration at appropriate levels necessary for

normal cell survival.

iv. The proposed model is the first non-linear spatial model for studying relationships among

the parameters like buffers, SERCA pump, ER leak and source influx involved in the calcium

homeostasis of an α-cell.

v. Combination of cubic spline and Newton-Raphson method is superior as compared to the

other methods like finite element method with linear shape functions, as the proposed approach

required less number of elements and less amount of computational effort for solving non-linear

reaction-diffusion model as compared to the finite element method with linear shape functions

and Gauss elimination method used by most of the earlier research workers for solving linear

reaction-diffusion model of calcium homeostasis in various other cells.

The proposed model gives better insight into the role of various parameters in regulating calcium
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concentration in an α-cell. This information is crucial in controlling the disorders and diseases

caused by the dysfunction of α-cell like diabetes, etc. The model can be applied in the study

of diabetes, as it gives information about the factors involved in calcium regulation of α-cell.

Calcium directly regulates glucagon secretion through α-cells. So, with the help of the model, it is

possible to observe the factors responsible for the disruption of glucagon secretion, which is one

of the main factors in regulating the blood glucose level and responsible for the development of

diabetes and many other metabolic disorders. The information about the relationships among

the various parameters involved in the regulation of calcium level in the α-cell obtained from the

proposed model can be useful for developing a framework for the diagnosis and treatment of

various disorders like diabetes, etc. The proposed model and approach can also be extended for

its applications in various other cells like neurons, astrocytes, myocytes, oocytes, and β-cells for

calcium homeostasis and their respective disorders.

5 Appendix

Cubic spline method

The essential idea for using the cubic spline method is to fit a piecewise function with the help of

cubic polynomials:

Q(x) =



















q1(x), x ∈ [x1, x2]

q2(x), x ∈ [x1, x3]
...

qn−1(x), x ∈ [xn−1, xn]

, (15)

q ′
j s denotes the cubic polynomial and is defined as follows:

qj(x) = aj(xj − x)3 + bj(xj − x)2 + cj(xj − x) + dj, (16)

for j = 1, 2, 3, · · · , n − 1.

As it is expected that the curve Q(x) must be continuous across its full interval, it follows that

each sub-function must connect at the data points,

qj(xj) = qj−1(xj), (17)

for j = 2, 3, · · · , n.

The derivatives at the data points must also be equal in order for the curve to be smooth over the

interval; so,

q ′
j (xj) = q ′

j−1(xj), (18)

for j = 2, 3, · · · , n.

Lastly, since q ′′
j (x) has to be continuous across the interval,

q ′′
j (j) = q ′′

j−1(xj),

for j = 1, 2, 3, · · · , n − 1.

After simplifying the above equations (15), (16), (17) and (18), the cubic spline Q(x) interpolating

to the function y(x) at the knots xj = x0 + jh for j = 1, 2, 3, · · · , n − 1 is given in the interval
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xj−1 ≤ x ≤ xj by the equation,

Q(x) = Nj−1

(xj − x)3

6h
+ Nj

(x − xj−1)
3

6h
+

(

yj−1 −
h2

6
Nj−1

)

(xj − x)

h
+

(

yj −
h2

6
Nj

)

(x − xj−1)

h
,

(19)

where Nj = Q ′′(xj) and yj = y(xj).

Q ′(x+j ) = −

h

3
Nj −

h

6
Nj+1 +

yj+1 − yj

h
, (20)

for j = 0, 1, 2, 3, · · · , n − 1.

Q ′(x−j ) =
h

3
Nj +

h

6
Nj−1 +

yj − yj−1

h
, (21)

for j = 1, 2, 3, · · · , n. The continuity of the first derivative implies,

h

6
Nj−1 +

2h

3
Nj +

h

6
Nj+1 =

yj+1 − 2yj + yj−1

h
, (22)

where j = 1, 2, 3, · · · , n − 1 and h = xj − xj−1.

Newton-Raphson method

Consider a non-linear system of equations,

f1(x1, x2) = 0,

f2(x1, x2) = 0.
(23)

Let x(0) = (x
(0)
1 , x

(0)
2 ) be the initial guess to estimate the solution and f be differentiable at x(0).

The equation to the tangent plane to the function yi = fi(x1, x2) at x(0) for i = 1, 2 is,

yi − fi(x(0)) =
∂

∂x1
[ fi(x(0))](x1 − x

(0)
1 ) +

∂

∂x2
[ fi(x(0))](x2 − x

(0)
2 ). (24)

The above expression can be written in terms of the Jacobian matrix J(x
(0)
1 , x

(0)
2 ) as follows:

[

y1 − f1(x(0))

y2 − f2(x(0))

]

=

[

∂
∂x1

[ f1(x(0))] ∂
∂x2

[ f1(x(0))]
∂

∂x1
[ f2(x(0))] ∂

∂x2
[ f2(x(0))]

] [

(x1 − x
(0)
1 )

(x2 − x
(0)
2

]

. (25)

If the given system is expressed as a vector V = F(x), then from equation (25);

∆F ≈ J(x
(0)
1 , x

(0)
2 )∆X. (26)

Suppose that (p1, p2) be the solution of equation (23); that is,

f1(p1, p2) = 0,

f2(p1, p2) = 0.
(27)
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To solve the equation (23) using Newton’s approach, we must take into account a little change in

the function near the coordinates (p
(0)
1 , p

(0)
2 ):

∆y1 = y1 − f1(x(0)), ∆x1 = (x1 − p
(0)
1 ),

∆y2 = y2 − f2(x(0)), ∆x2 = (x2 − p
(0)
2 ).

(28)

Set (x
(0)
1 , x

(0)
2 ) = (p1, p2) in equation (23) and use equation (27) to see that (y1, y2) = (0, 0). Hence

the changes in the dependent variables are:

y1 − f1(x(0)) = f1(p1, p2)− f1(p
(0)
1 , p

(0)
2 ) = 0 − f1(p

(0)
1 , p

(0)
2 ),

y2 − f2(x(0)) = f2(p1, p2)− f2(p
(0)
1 , p

(0)
2 ) = 0 − f2(p

(0)
1 , p

(0)
2 ).

(29)

Use the result of equation (29) in equation (25) to get the linear transformation,

[

∂
∂x1

[ f1(P0)]
∂

∂x2
[ f1(P0)]

∂
∂x1

[ f2(P0)]
∂

∂x2
[ f2(P0)]

]

[

∆x1

∆x2

]

≈

[

f1(P0)

f2(P0)

]

, (30)

where P0 = (p
(0)
1 , p

(0)
2 ). If the Jacobian J(P0) in (30) is nonsingular, we can solve for

∆P = [∆x1, ∆x2]
′ = [p1, p2]

′
− [p

(0)
1 , p

(0)
2 ] ′

as follows:

∆P ≈ J(P0)
−1F(P0). (31)

Then the next approximation P1 to the solution P is,

P1 = P0 + ∆P = P0 − J(P0)
−1F(P0). (32)

For a system of n number of equations, Newton’s method can be written by generalizing the

equation (30).
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Abstract

Controlling an outbreak through response measures is critical to saving lives and protecting vulnerable
populations. This article proposes an epidemic model with three intervention measures: media
coverage, isolation, and medical therapy. Since randomness plays an important role in biology, from
the molecular level to the organismal level, we extend our system to a more realistic framework, which
then takes into account the effect of standard jumps due to some sudden environmental changes. After
providing the associated framework, the sharp criteria for asymptotic extinction and persistence of
illness are derived. To check the accuracy of our results, we perform two numerical examples.
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1 Introduction

Mathematical modeling is a robust tool for understanding the attitude of infections and assessing

the influence of various intervention strategies. In the context of biological modeling, "intervention

measures" refer to the implementation of measures to reduce the spread of disease [1]. The most

commonly used interventions include social distancing, wearing masks, contact tracing, isolation

or quarantine, and hospitalization. To simulate the impact of these interventions, one can use a

compartmental model, which divides the population into different compartments based on their

infection status [2]. Also, it is possible to introduce parameters that represent the effectiveness

of these interventions, such as the reduction in transmission due to social distancing or the ef-

fectiveness of a vaccine. By adjusting these parameters, one can simulate the impact of different

intervention strategies on the evolution of the illness [3].
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Media intervention can play a critical role in shaping public perception, awareness, and behavior

during an epidemic. Effective media interventions can help to disseminate accurate information

about the disease, promote healthy behaviors, and counter misinformation and rumors [4]. One

way that media intervention can have an impact is by increasing knowledge and awareness about

the disease. This can be done through the dissemination of accurate and up-to-date information

about the disease, its transmission, symptoms, and prevention [5]. By providing clear and concise

information, media intervention can help to increase public understanding of the disease and the

need for preventive measures. Another way that media intervention can have an impact is by

promoting healthy behaviors. During an epidemic, media intervention can be used to encourage

individuals to adopt protective behaviors such as hand washing, wearing masks, and social

distancing. By promoting these behaviors, media intervention can help to reduce the transmission

of the disease and slow the spread of the epidemic. Media intrusion can also help to counter

misinformation and rumors that may be circulating during an epidemic. Misinformation can

lead to fear, panic, and irrational behavior, which can exacerbate the spread of the disease [6]. By

providing accurate information and dispelling rumors, media intervention can help to reduce fear

and promote rational decision-making.

Isolation is one of the key measures used to control the spread of an epidemic. It involves separat-

ing individuals who are infected with the disease from those who are not infected [7]. Generally,

isolation can take different forms, depending on the severity of the epidemic and the resources

available. In some cases, isolation may involve self-isolation at home for individuals who have

mild symptoms or who have been exposed to the disease. In more severe cases, isolation may

involve hospitalization of individuals who are severely ill or at high risk of complications. Isolation

is effective for controlling the spread of an epidemic for several reasons [8]. First, it can prevent

infected individuals from coming into contact with uninfected individuals, which can reduce

the transmission of the disease. By separating infected individuals from others, isolation can

help to break the chain of transmission and slow the spread of the disease [9]. Second, isolation

can provide medical care and support for individuals who are infected. In some cases, infected

individuals may require hospitalization and medical treatment to manage their symptoms and

prevent complications. Isolation in a hospital setting can ensure that infected individuals receive

the care and treatment they need. Third, isolation can provide time for public health officials to

track and monitor the spread of the disease. By isolating infected individuals and tracing their

contacts, public health officials can identify and isolate additional cases, which can further reduce

the spread of the disease [10].

A hospitalization intervention is a strategy implemented during an epidemic to reduce the number

of hospitalizations due to the illness [11]. This can involve various measures, such as increasing

hospital capacity, improving triage processes to identify and prioritize the most severe cases, and

implementing effective treatments. During an epidemic, hospitalizations can quickly overwhelm

healthcare systems, leading to shortages of beds, equipment, and staff [12]. By implementing

hospitalization interventions, health-care providers can work to ensure that those most in need

receive the care they require, while also preventing the spread of the illness to others. Some

examples of hospitalization interventions that may be used during an epidemic include setting

up temporary field hospitals to increase capacity, using telemedicine to reduce in-person visits

and decrease the risk of transmission, and developing effective treatments and therapies to help

patients recover more quickly and avoid hospitalization altogether [13].

The incubation period of an epidemic is the time period between the initial infection with a

pathogen and the onset of symptoms of the disease [14]. During this period, the infected individ-

ual may be asymptomatic, meaning that they are not yet showing any symptoms of the disease,

but they may still be able to transmit the pathogen to others. The length of the incubation period
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can vary depending on the pathogen and the individual’s immune system [15]. For example,

the incubation period for influenza is typically between 1 − 4 days, while the incubation period

for COVID-19 can range from 2 − 14 days, with an average of 5 − 6 days. Understanding the

incubation period of an epidemic is important for several reasons. First, it can help public health

officials to identify and isolate infected individuals before they become symptomatic, which can

help to prevent the spread of the disease [16]. Second, it can help to determine the length of

time that exposed individuals need to be monitored for symptoms and potential infection. It is

important to note that the incubation period is not the same as the infectious period, which is

the length of time during which an infected individual can transmit the disease to others. The

infectious period can be shorter or longer than the incubation period, depending on the pathogen

and the individual’s immune system [17].

In order to build a mathematical model that takes into consideration the above interventions

and the different types of immunities, we assume that the total population is divided into seven

groups of susceptible, exposed, infectious persons with actual viral symptoms, individuals asymp-

tomatically infected, isolated, individuals under treatment and persons with full cure, with

concentrations expressed respectively by S(t), E(t), C(t), I(t), Q(t), Z(t) and P(t). The epidemio-

logical exchanges between these groups are depicted through the following dynamical system

(denoted by SECIQZP):

dS(t) =

(
Π − (m+ a)S(t)− S(t)

(
I(t) + gC(t)

)(
b1 −

b2 I(t)

p + I(t)

)
+ εQ(t)

)
dt,

dE(t) =

(
S(t)

(
I(t) + gC(t)

)(
b1 −

b2 I(t)

p + I(t)

)
− (m+ β)E(t)

)
dt,

dC(t) =
(
(1 − d) βE(t)− (m+ ϖC + sC + hC)C(t)

)
dt,

dI(t) =
(

βdE(t)− (m+ ϖI + sI + hI) I(t)
)

dt,

dQ(t) =
(
aS(t)− (m+ ε) Q(t)

)
dt,

dZ(t) =
(

ϖI I(t) + ϖCC(t)− (m+ sZ + hZ) Z(t)
)

dt,

dP(t) =
(
sZZ(t) + sI I(t) + sCC(t)−mP(t)

)
dt.

(1)

The positive parameters of this model are defined as follows:

• Π is the recruitment rate of the uninfected (but susceptible) persons that corresponds to normal

births and immigration.

• m, hC, hI and hZ are denoting, in this order, the normal mortality rate of all individuals and the

infection-induced mortality rates affecting only from groups C, I and Z.

• a and ε represent the exchange rates between S and Q classes.

• b1 is the standard contamination rate before applying media intervention. b2 is the extra

reduced contact rate under the application of media intrusion such that b1 − b2 is positive. p is

the saturation coefficient.

• 0 < g < 1 is the parameter that ensures the high infectivity of infected individuals.

• β is the transfer rate from E group to I population with the probability 0 < d < 1 of becoming

infectious and (1 − d) for entering C class.

• ϖI and ϖC are respectively the treatment rates I and C people.

• sZ, sI and sC are the total cure rates of Z, I and C people.
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To better understand the different transfer rates between classes, we present the diagram shown

in Figure 1.
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Figure 1. Illustrative diagram of SECIQZP epidemic model transfer rates

Fluctuations are a common feature of epidemic outbreaks, where the number of cases or the

transmission rate can vary over time due to various factors such as changes in behavior, public

health interventions, or the emergence of new variants of the pathogen [18]. The magnitude and

frequency of fluctuations in an epidemic outbreak can depend on a variety of factors, including the

mode of transmission, the population demographics, and the effectiveness of control measures. For

example, in an outbreak of a highly infectious disease with a short incubation period, fluctuations

may be more pronounced due to the rapid spread of the pathogen [19]. To account for fluctuations

in epidemic outbreaks, mathematical models are often used to simulate the spread of the disease

over time and evaluate the impact of different control measures. These models can help public

health officials make informed decisions about when to implement or relax interventions to

achieve the optimal balance between controlling the outbreak and minimizing the economic and

social costs of control measures [20].

Random jumps are a type of stochastic process where the magnitude of changes in a variable

occurs randomly over time [21]. In the context of an epidemic situation, random jumps could

refer to sudden and significant increases in the number of cases or spread of the disease that

occur unpredictably [22]. In epidemiology, random jumps have been used to model the spread

of infectious diseases in populations with complex social structures or mobility patterns, where

outbreaks can occur in unpredictable locations or at unpredictable times. Random jumps can

also capture the behavior of disease outbreaks that exhibit sudden bursts of activity due to

super-spreader events or other factors [23].

The novelty of this study is to probe the impact of jumps on the dynamics of system (1). The pivotal

objective of this article is to provide sufficient criteria for asymptotic extinction and persistence.

The global threshold is difficult to derive in this model due to its complexity, but we will do our

best to offer precise conditions and this is the strength of our study. By considering the standard

Lévy jumps associated with the compensated Poisson measure defined on a probabilistic basis
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(Ω,F , {Ft}t⩾0, P), our model takes the following general form:

dS(t) =

(
Π − (m+ a)S(t)− S(t)

(
I(t) + gC(t)

)(
b1 −

b2 I(t)

p + I(t)

)
+ εQ(t)

)
dt + dL1(t),

dE(t) =

(
S(t)

(
I(t) + gC(t)

)(
b1 −

b2 I(t)

p + I(t)

)
− (m+ β)E(t)

)
dt + dL2(t),

dC(t) =
(
(1 − d) βE(t)− (m+ ϖC + sC + hC)C(t)

)
dt + dL3(t),

dI(t) =
(

βdE(t)− (m+ ϖI + sI + hI) I(t)
)

dt + dL4(t), (2)

dQ(t) =
(
aS(t)− (m+ ε) Q(t)

)
dt + dL5(t),

dZ(t) =
(

ϖI I(t) + ϖCC(t)− (m+ hZ + sZ) Z(t)
)

dt + dL6(t),

dP(t) =
(
sZZ(t) + sI I(t) + sCC(t)−mP(t)

)
dt + dL7(t),

where

dL1(t) = β1S(t)dX1(t) +

∫

Z
γ1(z)S(t−)Y−(ds, dz),

dL2(t) = β2E(t)dX2(t) +

∫

Z
γ2(z)E(t−)Y−(ds, dz),

dL3(t) = β3C(t)dX3(t) +

∫

Z
γ3(z)C(t−)Y−(ds, dz),

dL4(t) = β4 I(t)dX4(t) +

∫

Z
γ4(z)I(t−)Y−(ds, dz),

dL5(t) = β5Q(t)dX5(t) +

∫

Z
γ5(z)Q(t−)Y−(ds, dz),

dL6(t) = β6Z(t)dX6(t) +

∫

Z
γ6(z)Z(t−)Y−(ds, dz),

dL7(t) = β2P(t)dX7(t) +

∫

Z
γ7(z)P(t−)Y−(ds, dz).

In this setting, Xℓ (ℓ = 1, · · · , 7), are Wiener processes with positive amplitudes βℓ (i = 1, · · · , 7)

respectively. Y− is the compensated Poisson measure associated with a Lévy measure Λ+ defined

on
(
R

7 \ {0},B(R7 \ {0})
)
. γℓ : Z ⊂ R

7 \ {0} → R are measurable functions and γℓ(z) > −1.

The organization of the remaining parts is as follows: In Section 2, we present the probabilistic

analysis of a perturbed SECIQZP model (2) by offering the associated hypothetical framework and

giving the condition of said properties. In Section 3, we numerically check our obtained results. In

Section 4, we summarize the main results of our study.

2 Stochastic analysis of a perturbed SECIQZP model

Hypothetical framework

The first step of this section is to clearly define the hypothetical framework of our analysis. This

includes the specification of the well-posdenes of our perturbed system, the necessary assumptions

and the useful techniques. Regarding the underlying assumption, we assume the following:

(A) The quantities

∫

Z
γ2

k (z)Λ+(dz) and

∫

Z

(
γk(z) − ln

(
1 + γk(z)

))
Λ+(dz) are finite for all k ∈
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{1, . . . , 7}.

Under (A), system (2) is mathematically well-defined and has a unique postive solution [24]. In

other words, it is a model that provides a reliable and accurate representation of the biological

disease being studied. To derive some large-time estimates of the solution, we need to add a

second assumption:

(B) Suppose that for a given s > 2, we have

m− 0.5(s − 1)
(

β2
1 ∨ β2

2 ∨ β2
3 ∨ β2

4 ∨ β2
5 ∨ β2

6 ∨ β2
7

)
− s−1Is(z) > 0,

where

Is(z) =

∫

Z

((
1 +

γ⋆(z)
︷ ︸︸ ︷
γ1(z)∨ γ2(z)∨ γ3(z)∨ γ4(z)∨ γ5(z)∨ γ6(z)∨ γ7(z)

)s
− 1

− s
(

γ1(z)∧ γ2(z)∧ γ3(z)∧ γ4(z)∧ γ5(z)∧ γ6(z)∧ γ7(z)︸ ︷︷ ︸
γ⋆(z)

))
Λ+(dz).

Lemma 1. Under (B), we have the following properties:

(a) lim
t→∞

yℓ(t)

t
= 0 a.s. ∀ℓ ∈ {1, · · · , 7} .

(b) lim
t→∞

1

t

∫ t

0
yℓ(s)dXℓ(s) = 0 a.s. ∀ℓ ∈ {1, · · · , 7} .

(c) lim
t→∞

1

t

∫ t

0

∫

Z
γℓ(z)yℓ(s−)Y−(ds, dz) = 0 a.s. ∀ℓ ∈ {1, · · · , 7} .

The proof of the above lemma is similar to a previously proven result in [25], it is better to omit

the proof in order to avoid redundancy and to streamline the presentation of the argument.

Asymptotic extinction

Asymptotic extinction refers to the extinction of a species or population due to random, unpre-

dictable events that occur in the environment, rather than gradual, predictable changes. These

events may include natural disasters, epidemics, or fluctuations in the availability of resources. It

can be difficult to predict or prevent, as it is often influenced by factors beyond human control.

However, conservation efforts can help mitigate the effects of stochasticity by protecting habitat

and promoting genetic diversity within populations. Theoretically, we can provide sufficient

conditions for disease extinction which are provided in the following theorem.

Theorem 1. Assume that (A) and (B) hold. Then, we have the following inequality:

lim sup
t→∞

1

t
ln
(

E(t) + C(t) + I(t)
)
⩽ b1S• −m−

1

6

(
β2

2 ∧ β2
3 ∧ β2

4

)
− χ̃ = Cte a.s.,

where S• =
Π

m
× m+ ε

a+m+ ε
and

χ̃ =

∫

Z

{(
ln(1 + γ⋆(z))− γ⋆(z)

)
1{γ⋆(z)≤0} +

(
ln(1 + γ⋆(z))− γ⋆(z)

)
1{γ⋆(z)>0}

}

Λ+(dz).
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More precisely, the asymptotic extinction of a virus occurs when Cte < 0.

Proof By employing the stochastic Itô’s formula, we get

d ln
(

E(t) + C(t) + I(t)
)

=

{
1

E(t) + C(t) + I(t)

(
S(t)

(
I(t) + gC(t)

)(
b1 − b2

I(t)

p + I(t)

)

− (ϖC + sC + hC)C(t)− (ϖI + sI + hI) I(t)

)
−m−

β2
2 E2(t) + β2

3 C2(t) + β2
4 I2(t)

2 (E(t) + C(t) + I(t))2

+

∫

Z

{

ln

(
1 +

γ2(z)E(t) + γ3(z)C(t) + γ4(z)I(t)

E(t) + C(t) + I(t)

)
−

γ2(z)E(t) + γ3(z)C(t) + γ4(z)I(t)

E(t) + C(t) + I(t)

}

Λ+(dz)

}

dt

+
1

E(t) + C(t) + I(t)

(
β2E(t) dX2(t) + β3C(t) dX3(t) + β4 I(t) dX4(t)

)

+

∫

Z
ln

(
1 +

γ2(z)E(t−) + γ3(z)C(t−) + γ4(z)I(t−)

E(t−) + C(t−) + I(t−)

)
Y−(dt, dz).

Thanks to the positivity of the solution, we get

d ln (E(t) + C(t) + I(t))

⩽





S(t)

(
b1 − b2

I(t)

p + I(t)

)
−m− 0.5(β2

2 ∧ β2
3 ∧ β2

4)×
E2(t) + C2(t) + I2(t)
(

E(t) + C(t) + I(t)
)2





dt

+

∫

Z

{

ln

(
1 +

γ2(z)E(t) + γ3(z)C(t) + γ4(z)I(t)

E(t) + C(t) + I(t)

)
−

γ2(z)E(t) + γ3(z)C(t) + γ4(z)I(t)

E(t) + C(t) + I(t)

}

Λ+(dz)dt

+
β2E(t)

E(t) + C(t) + I(t)
dX2(t) + β4

C(t)

E(t) + C(t) + I(t)
dX3(t) + β5

I(t)

E(t) + C(t) + I(t)
dX4(t)

+

∫

Z
ln

(
1 +

γ2(z)E(t−) + γ3(z)C(t−) + γ4(z)I(t−)

E(t−) + C(t−) + I(t−)

)
Y−(dt, dz).

By employing Cauchy-Schwartz inequality, we get E2(t) + C2(t) + I2(t) ⩾
1

3

(
E(t) + C(t) + I(t)

)
.

Furthermore, we can easily check that

∫

Z

{

ln

(
1 +

γ2(z)E(t) + γ3(z)C(t) + γ4(z)I(t)

E(t) + C(t) + I(t)

)
−

γ2(z)E(t) + γ3(z)C(t) + γ4(z)I(t)

E(t) + C(t) + I(t)

}

Λ+(dz) ⩽ −χ̃.

Consequently,

d ln (E(t) + C(t) + I(t)) ⩽

{

b1S(t)−m−
(β2

2 ∧ β2
3 ∧ β2

4)

6
− χ̃

}

dt +
β2E(t)

E(t) + C(t) + I(t)
dX2(t)

+
β3C(t)

E(t) + C(t) + I(t)
dX3(t) +

β4 I(t)

E(t) + C(t) + I(t)
dX4(t) (3)

+

∫

Z
ln
(

1 +
(
γ2(z)∨ γ3(z)∨ γ4(z)

))
Y−(dt, dz).
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We integrate (3) from 0 to t, and we divide by t on both sides, we obtain

ln
(

E(t) + C(t) + I(t)
)

t
⩽

b1

t

∫ t

0
S(s)ds −m−

1

6

(
β2

2 ∧ β2
3 ∧ β2

4

)
− χ̃

+
β2

t

∫ t

0

E(s)

E(s) + C(s) + I(s)
dX2(s) +

β3

t

∫ t

0

C(s)

E(s) + C(s) + I(s)
dB3(s)

+
β4

t

∫ t

0

I(s)

E(s) + C(s) + I(s)
dX4(s) +

ln
(

E(0) + C(0) + I(0)
)

t
(4)

+
1

t

∫ t

0

∫

Z
ln
(

1 +
(
γ2(z)∨ γ3(z)∨ γ4(z)

))
Y−(ds, dz).

Now, we need to estimate
1

t

∫ t

0
S(s)ds. From (2), we remark that

S(t) = Πt − (m+ a)

∫ t

0
S(s) ds −

∫ t

0
S(s)

(
I(s) + gC(s)

)(
b1 −

b2 I(s)

p + I(s)

)
ds + ε

∫ t

0
Q(s) ds

+ β1

∫ t

0
S(s) dX1(s) +

∫ t

0

∫

Z
γ1(z)S(s−)Y−(ds, dz) + S(0)

⩽ Πt − (m+ a)

∫ t

0
S(s) ds + ε

∫ t

0
Q(s) ds + β1

∫ t

0
S(s) dX1(s)

+

∫ t

0

∫

Z
γ1(z)S(s−)Y−(ds, dz) + S(0).

Then

1

t

∫ t

0
S(s) ds ⩽

1

m+ a

(
Π +

ε

t

∫ t

0
Q(s) ds +

β1

t

∫ t

0
S(s) dX1(s)

+
1

t

∫ t

0

∫

Z
γ1(z)S(s−)Y−(ds, dz) +

S(0)

t
−

S(t)

t

)
. (5)

Again, we need to estimate
1

t

∫ t

0
Q(s)ds. From system (2), we have

Q(t) = a

∫ t

0
S(s) ds − (m+ ε)

∫ t

0
Q ds + β2

∫ t

0
Q(s) dX5(s) +

∫ t

0

∫

Z
γ1(z)Q(s−)Y−(ds, dz) + Q(0),

which implies that

1

t

∫ t

0
Q(s)ds =

1

m+ ε

(
a

t

∫ t

0
S(s)ds+

β5

t

∫ t

0
Q(s)dX5(s) +

1

t

∫ t

0

∫

Z
γ5(z)Q(s−)Y−(ds, dz) +

Q(0)− Q(t)

t

)
.

(6)
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Combining (5) with (6) yields

1

t

∫ t

0
S(s) ds ⩽

1

m+ a

{

Π+ ε

(
a

(m+ ε)t

∫ t

0
S(s) ds+

β5

(m+ ε)t

∫ t

0
Q(s)dX5(s)

+
1

(m+ ε)t

∫ t

0

∫

Z
γ5(z)Q(s−)Y−(ds, dz) +

Q(0)

(m+ ε) t

)

+
β1

t

∫ t

0
S(s)dX1(s) +

1

t

∫ t

0

∫

Z
γ1(z)S(s−)Y−(ds, dz) +

S(0)

t

}

.

Thus,

1

t

∫ t

0
S(s) ds ⩽

Π(m+ ε)

m(a+m+ ε)
+

εβ2

m(a+m+ ε)t

∫ t

0
Q(s)dX5(s) +

(m+ ε)β1

m(m+ a+ ε)t

∫ t

0
S(s)dX1(s)

+
ε

m(a+m+ ε)t

∫ t

0

∫

Z
γ5(z)Q(s−)Y−(ds, dz)

+
(m+ ε)

m(m+ a+ ε)t

∫ t

0

∫

Z
γ1(z)S(s−)Y−(ds, dz)

+
εQ(0)

m(m+ a+ ε)t
+

(m+ ε)S(0)

m(m+ a+ ε)t
. (7)

From Lemma 1, we obtain

lim
t→∞

1

t

∫ t

0
S(s) ds ⩽

Π

m
× m+ ε

a+m+ ε
= S•. (8)

An application direct of the strong law of large numbers for local martingales gives






lim
t→∞

1

t

∫ t

0

∫

Z
ln
(

1 +
(
γ2(z)∨ γ3(z)∨ γ4(z)

))
Y−(ds, dz) = 0 a.s.

lim
t→∞

β2

t

∫ t

0

E(s)

E(s) + C(s) + I(s)
dX2(s) = 0 a.s.,

lim
t→∞

β3

t

∫ t

0

A(s)

E(s) + C(s) + I(s)
dX3(s) = 0 a.s.,

lim
t→∞

β4

t

∫ t

0

I(s)

E(s) + C(s) + I(s)
dX4(s) = 0 a.s.

(9)

Finally and from results (4), (8) and (9), we conclude that

lim sup
t→∞

1

t
ln
(

E(t) + C(t) + I(t)
)
⩽ b1S• −m−

1

6

(
β2

2 ∧ β2
3 ∧ β2

4

)
− χ̃ a.s.

If Cte < 0, then asymptotic extinction will occur fine. ■

Remark 1. The positivity of the solution allows us to affirm that lim
t→∞

E(t) = 0, lim
t→∞

C(t) = 0 and

lim
t→∞

I(t) = 0 a.s. Here the total extinction of the virus is mentioned.
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Corollary 1. According to the hypothesis and the context of Theorem 1, we get

lim
t→∞

1

t

∫ t

0
S(s) ds = S• a.s., lim

t→∞

1

t

∫ t

0
Q(s) ds = Q• a.s.

Proof From system (2), we obtain

d
(
S(t) + E(t)

)
=

{
Π − (m+ a) S(t) + εQ(t)− (m+ β) E(t)

}
dt

+ β1S(t) dX1(t) +

∫

Z
γ1(z)S(t−)Y−(dt, dz)

+ β2E(t) dX2(t) +

∫

Z
γ2(z)E(t−)Y−(dt, dz). (10)

We integrate (10) from 0 to t, and we divide by t on both sides, we get

1

t

(
S(t) + E(t)

)
= Π −

(m+ a)

t

∫ t

0
S(s) ds +

ε

t

∫ t

0
Q(s) ds −

(m+ β)

t

∫ t

0
E(s) ds

+
S(0) + E(0)

t
+ β1

∫ t

0
S(s) dX1(s) +

∫ t

0

∫

Z
γ1(z)S(s−)Y−(ds, dz)

+ β2

∫ t

0
E(s) dX2(s) +

∫ t

0

∫

Z
γ2(z)E(s−)Y−(ds, dz).

From the expression (6), we have

1

t

(
S(t) + E(t)

)
= Π −

(m+ a)

t

∫ t

0
S(s) ds +

ε

(ε +m)t

(
a

∫ t

0
S(s) ds −

Q(t)− Q(0)

t

+
β5

t

∫ t

0
Q(s)dX5(s) +

∫ t

0

∫

Z
γ5(z)Q(s−)Y−(ds, dz)

)
−

(m+ β)

t

∫ t

0
E(s) ds

+
S(0) + E(0)

t
+ β1

∫ t

0
S(s) dX1(s) +

∫ t

0

∫

Z
γ1(z)S(s−)Y−(ds, dz)

+ β2

∫ t

0
E(s) dX2(s) +

∫ t

0

∫

Z
γ2(z)E(s−)Y−(ds, dz).

Then

1

t

(
−

εa

ε +m
+m+ a

) ∫ t

0
S(s) ds = Π +

ε

m+ ε

Q(0)− Q(t)

t
−

S(t) + E(t)

t
−

(m+ β)

t

∫ t

0
E(s) ds

+
εβ5

(m+ ε)t

∫ t

0
Q(s)dX5(s) +

ε

(m+ ε)t

∫ t

0

∫

Z
γ5(z)Q(s−)Y−(ds, dz)

+
S(0) + E(0)

t
+

β1

t

∫ t

0
S(s) dX1(s) +

1

t

∫ t

0

∫

Z
γ1(z)S(s−)Y−(ds, dz)

+
β2

t

∫ t

0
E(s) dX2(s) +

1

t

∫ t

0

∫

Z
γ2(z)E(s−)Y−(ds, dz).
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By using Lemma 1, we directly obtain that

lim
t→∞

1

t

(
−

εa

ε +m
+m+ a

) ∫ t

0
S(s) ds = Π − lim

t→∞

(m+ β)

t

∫ t

0
E(s) ds a.s.,

From Remark 1, we indicated that lim
t→∞

E(t) = 0 a.s., which implies that lim
t→∞

1

t

∫ t

0
E(s) ds =

0 a.s. So

lim
t→∞

1

t

∫ t

0
S(s) ds = Π

(
−

εa

ε +m
+m+ a

)−1

=
Π

m
× m+ ε

a+m+ ε
= S•,

and

lim
t→∞

1

t

∫ t

0
Q(s) ds =

q

(Π +m)t

∫ t

0
S(s) ds −

Q(t)

(Π +m)t
+

Q(0)

(Π +m)t
+

β2

Π +m
× 1

t

∫ t

0
Q(s)dB2(s).

Therefore,

lim
t→∞

1

t

∫ t

0
Q(s) ds =

aS•

ε +m
= Q•.

■

Remark 2. From the above results, we can directly infer that

lim
t→∞

1

t

∫ t

0
Z(s) ds = 0 a.s., and lim

t→∞

1

t

∫ t

0
P(s) ds = 0 a.s.

Asymptotic persistence

Asymptotic persistence of a virus refers to the scenario where the infection becomes endemic in a

population, meaning that it becomes present at a relatively constant level within that population

over time. This can occur when the virus has a low but steady transmission rate, allowing it

to continue spreading even when there are no major outbreaks. In this subsection, we give an

optimal condition for the continuation of the virus which is presented in the following theorem.

Theorem 2. Assume that (A) and (B) hold. If f1(û) > f2 + f3, then we have the following inequality

lim inf
t→∞

1

t

∫ t

0

(
I(s) + C(s)

)
ds ⩾

1

b1
( f1(û)− f2 − f3) = Cte a.s.,

where

• f1(u) = 3
(

3
√

g(1 − d)u + 3
√

d× (1 − u)
)

3
√

Π (b1 − b2) β, ∀u ∈ (0, 1),

• f2 = 7m+ β + (ϖC + sC + hC) + (ϖI + sI + hI) + (hZ + sZ) + |Π − a| ,

• f3 =
1

2

7∑

i=1

β2
i +

7∑

i=1

∫

Z

(
γi(z)− ln

(
1 + γi(z)

))
Λ+(dz),

• û =
√

g(1 − d)
(√

g(1 − d) +
√
d

)−1
, (0 < û < 1).

More precisely, the asymptotic persistence of a virus occurs when Cte > 0.
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Proof We define the function F̂ (y) =
7∑

ℓ=1

ln (yℓ). Direct use of Itô’s formula gives

dF̂ (y(t)) =

{(
Π

S(t)
− (m+ a)−

(
I(t) + gC(t)

)(
b1 −

b2 I(t)

d+ I(t)

)
+

εQ(t)

S(t)

)

+

(
S(t)

E(t)

(
I(t) + gC(t)

)(
b1 −

b2 I(t)

d+ I(t)

)
− (m+ β)

)

+

(
(1 − d) β

E(t)

C(t)
− (m+ ϖC + sC + hC)

)

+

(
βd

E(t)

I(t)
− (m+ ϖI + sI + hI)

)
+

(
a

S(t)

Q(t)
− (m+ ε)

)

+

(
ϖI

I(t)

Z(t)
+ ϖC

C(t)

Z(t)
− (m+ hZ + sZ)

)
+

(
sZ

Z(t)

P(t)
+ sI

I(t)

P(t)
+ sC

C(t)

P(t)
−m

)

− 0.5
7∑

i=1

β2
i −

7∑

i=1

∫

Z

(
γi(z)− ln

(
1 + γi(z)

))
Λ+(dz)

}

dt

+
7∑

i=1

βi dXi(t) +
7∑

i=1

∫

Z
ln
(
1 + γi(z)

)
Y−(dt, dz).

Then

dF̂ (y(t)) ⩾

{
Π

S(t)
− b1

(
I(t) + gC(t)

)
+ (ε ∧ a)

(
Q(t)

S(t)
+

S(t)

Q(t)

)
+

S(t)

E(t)
(b1 − b2) (I(t) + gC(t))

+ (1 − d) β
E(t)

C(t)
+ βd

E(t)

I(t)
−

7∑

i=1

∫

Z

(
γi(z)− ln

(
1 + γi(z)

))
Λ+(dz)

−

[
7m+ Π + a+ β + (ϖC + sC + hC) + (ϖI + sI + hI) + (hZ + sZ) + 0.5

7∑

i=1

β2
i

]}
dt

+
7∑

i=1

βi dXi(t) +
7∑

i=1

∫

Z
ln
(
1 + γi(z)

)
Y−(dt, dz).

By remarking that 2(Π ∧ a) = Π + a − |Π − a|; and
(
S2(t) + Q2(t)

)
⩾ 2S(t)Q(t), we get

dF̂ (X(t))⩾

([
(1 − û)Π

S(t)
+ (b1 − b2)

S(t)I(t)

E(t)
+ βd

E(t)

I(t)

]

+

[
ûΠ

S(t)
+ g (b1 − b2)

S(t)C(t)

E(t)
+ (1 − d) β

E(t)

C(t)

]

− b1 (I + gC(t))− f2 − f3

)
dt +

7∑

i=1

βi dXi(t) +
7∑

i=1

∫

Z
ln
(
1 + γi(z)

)
Y−(dt, dz).
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By employing the arithmetic-geometric inequality, we directly obtain

dF̂ (X(t)) ⩾

(
3 3

√
(1− û)Π (b1−b2) βd+ 3 3

√
ûΠ (b1−b2) gβ(1−d)−b1 (I+ gC(t))− f2 − f3

)
dt

+
7∑

i=1

βi dXi(t) +
7∑

i=1

∫

Z
ln
(
1 + γi(z)

)
Y−(dt, dz)

⩾

(
( f1(û)− f2 − f3)− b1 (I+ gC(t))

)
dt (11)

+
7∑

i=1

βi dXi(t) +
7∑

i=1

∫

Z
ln
(
1 + γi(z)

)
Y−(dt, dz).

An integration from 0 to t on both sides of (11) leads to

1

t

(
F̂ (y(t))− F̂ (y(0))

)
⩾ ( f1(û)− f2 − f3)−

b1

t

∫ t

0

(
I(s) + gC(s)

)
ds

+
1

t

7∑

i=1

βi Xi(t) +
1

t

7∑

i=1

∫ t

0

∫

Z
ln
(
1 + γi(z)

)
Y−(dt, dz).

Hence,

1

t

∫ t

0

(
I(s) + C(s)

)
ds ⩾

∫ t

0

(
I(s) + gC(s)

)
ds ⩾

1

b1

(
F̂ (X(0))− F̂ (X(t))

t
+ ( f1(û)− f2 − f3)

)

+
1

t

7∑

i=1

∫ t

0

∫

Z
ln
(
1 + γi(z)

)
Y−(dt, dz).

Thanks to the strong law of large numbers for local martingales and Lemma 1, we finally get

lim inf
t→∞

1

t

∫ t

0

(
I(s) + C(s)

)
ds ⩾

1

b1
( f1(û)− f2 − f3) = Cte a.s.

If Cte > 0, then asymptotic persistence will occur almost surely. That is to say that all classes of

the population persist in the mean. ■

Remark 3. In the context of a disease, persistence in the mean refers to the tendency of the disease incidence

or prevalence to revert back to its long-term average over time. This means that if the incidence or prevalence

of a disease is higher (or lower) than its long-term average in one period, it is likely to be closer to the average

in the next period.

3 Numerical verification

A numerical verification of theoretical results involves using computational methods to simulate a

mathematical model or theory and comparing the simulation results to the analytical predictions.

This process helps to validate the theoretical results and to gain a better understanding of the

underlying phenomena. For this reason, we present the following two examples in order to

validate the outcomes of Theorems 1 and 2.
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Example 1: Asymptotic extinction

We consider the following initial data:

(
S(0), E(0), C(0), I(0), Q(0), Z(0), P(t)

)
=
(

3, 1.6, 1.2, 1.3, 1.8, 0, 5, 0.2
)

.

For deterministic parameters, we select Π = 0.01, m = 0.014, hC = 0.0005, hI = 0.0008, hZ =

0.004, a = 0.1003, ϵ = 0.071, b1 = 1.2, b2 = 0.1, p = 0.71, g = 0.0594, β = 0.6201, d = 0.2,

ϖI = 0.033, ϖC = 0.024, sZ = 0.02, sI = 0.0183 and sC = 0.0139. For stochastic parameters, we

select βℓ = 0.25 and γℓ = 0.12. Then

m− 0.5(s − 1)
(

β2
1 ∨ β2

2 ∨ β2
3 ∨ β2

4 ∨ β2
5 ∨ β2

6 ∨ β2
7

)
− s−1Is(z) = 0.00145 > 0,

and

lim sup
t→∞

1

t
ln
(

E(t) + C(t) + I(t)
)
⩽ b1S• −m−

1

6

(
β2

2 ∧ β2
3 ∧ β2

4

)
− χ̃ = −0.0075 < 0.

Consequently, the conditions of Theorem 1 are verified and the infection will asymptotically

extinct (see Figure 2).
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Figure 2. Random paths of perturbed model (2) in the case of asymptotic extinction

Example 2: Asymptotic persistence

We consider the following initial data:

(
S(0), E(0), C(0), I(0), Q(0), Z(0), P(t)

)
=
(

3, 1.6, 1.2, 1.3, 1.8, 0, 5, 0.2
)

.

For deterministic parameters, we select Π = 0.04, m = 0.014, hC = 0.0005, hI = 0.0008, hZ =

0.004, a = 0.1003, ϵ = 0.071, b1 = 1.2, b2 = 0.1, p = 0.71, g = 0.0594, β = 0.6201, d = 0.2,

ϖI = 0.033, ϖC = 0.024, sZ = 0.02, sI = 0.0183 and sC = 0.0139. For stochastic parameters, we

select βℓ = 0.15 and γℓ = 0.08. Then f1(û) = 0.145 > f2 + f3 = 0.0378, and

lim inf
t→∞

1

t

∫ t

0

(
I(s) + C(s)

)
ds ⩾

1

b1
( f1(û)− f2 − f3) = 0.0893 > 0.

From Figure 4, we confirm the result of Theorem 1. Therefore, all model classes persist almost

surely, which are shown in Figures 3 and 4.
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Figure 3. Random paths of the solution I(t) + C(t) in the case of asymptotic persistence
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Figure 4. Random paths of perturbed model (2) in the case of asymptotic persistence

4 Concluding remarks

Intervention measures are strategies implemented in epidemiology to prevent or control the

spread of infectious diseases. These measures can be classified into primary, secondary, and

tertiary prevention. In this article, we have proposed a general epidemic model that takes into

consideration various measurement interventions such as media, isolation, and therapy. Our

model is extended to a more general and real context by considering the effect of discontinuities.

Epidemiological leaps refer to sudden increases in the number of cases of a particular disease

within a population or geographic area. These jumps can occur for a variety of reasons, including

changes in the environment, behaviors, or characteristics of the pathogen. It is important to

understand these factors to develop effective strategies to control and manage the spread of the

disease. For this reason, we have provided the conditions for the extinction and persistence of the

infection. Finally, we performed some numerical experiments to validate our study.

In general, we point out that this study generalizes many previous works to the case of standard

Lévy jumps. Furthermore, this study offers a few new insights for understanding the transmission

of the disease with complex real-world assumptions. In other words, the techniques and models

investigated in this work open up several research opportunities for future studies.
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Abstract

In this work, a fractional-order vaccination model for the novel Coronavirus 2019 (COVID-19) incor-
porating environmental transmission is considered and analyzed using tools of fractional calculus.
The Laplace transform technique and the fixed point theorem lay out the model solutions’ existence
and uniqueness. The solutions’ positivity and boundedness are also demonstrated. Additionally, the
stability of the model’s equilibrium points is discussed using the fractional-order system stability
theory. The model is fitted using the data sets for the Pfizer vaccination program in Nigeria from April
1, 2021, to June 10, 2021. In conclusion, simulation results for various fractional parameter values
are presented. It has been observed that increasing fractional-order values has distinct effects on the
various model compartments, for R0 < 1 and R0 > 1, respectively.

Keywords: Fractional derivative; stability; COVID-19; environmental transmission; numerical simula-
tion
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1 Introduction

In 1965, scientists found a human coronavirus in the passageway that separates the upper and

lower parts of the human body to let in and let out the air. [1] was the first discovered in an adult

with a common cold. Humans can become infected with seven different kinds of coronavirus.

In 2002, the sort liable for the serious intense respiratory condition (SARS) arose in South China.

For a brief period, it impacted 28 different nations, giving an all-out number of around 8000
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additional infected individuals bringing about 774 passings by July 2003, with a little increase

in 2004 having just four additional cases, [2]. Experts believe that bats are the source of the

coronavirus (SARS-COV2), which also gave rise to the middle east respiratory syndrome (MERS)

and severe acute respiratory syndrome (SARS) [3]. It is one of a group of viruses that can cause a

variety of symptoms, including fever, pneumonia, difficulty breathing, and a lung infection. In

China, Wuhan Hubei province, an outbreak of a respiratory illness occurred in December 2019.

The WHO declared Coronavirus disease (COVID-19) a global public health emergency due to the

virus’s rapid spread and as the leading cause of this illness. According to WHO, it affected roughly

19 countries by the end of January 2020, with 11791 confirmed cases and 213 deaths. The common

symptoms are dry cough, exhaustion, fever (although some older people may not experience these

symptoms), aches and pains, nasal congestion, a runny nose, sore throat, or diarrhea [4]. Droplets

from the infected person’s mouth or nose can spread the virus between people who are within

two meters away from each other. It can likewise be spread in ineffectively ventilated indoor

settings where individuals stay for a more broadened period, [4]. Reports show that transmission

in children between the ages of 10-14 and teenagers have lower vulnerability than grown-ups, [5],

[6]. Millions of people around the world, including in China, Canada, the United States, France,

and Germany, have contracted COVID-19 since its discovery. According to the National Centers

for Disease Control and Prevention (NCDC), as of June 25, 2021, approximately 167430 individuals

in Nigeria had been identified as carrying the virus, 163937 individuals had been discharged, and

approximately 2119 deaths had been recorded [7].

Mathematical models have become excellent tools for comprehending the behavior of infectious

diseases [8, 9]. There have been a variety of approaches taken to investigate the means by which

the disease is transmitted from person to person, the ways in which it can be avoided, and the

possibilities for infectious disease control. Mathematical models have been an essential device or

tool in completing this task. Numerous models have been developed by numerous individuals,

including mathematicians and biologists, since the COVID-19 outbreak to explain the virus’s

spread from person to person. Mathematical modeling of COVID-19 transmission was taken into

consideration by Sarita et al. [10]. They considered the roles of different intervention strategies such

as lockdown, quarantine, and isolation of symptomatic individuals. They concluded in the model’s

numerical simulation and sensitivity analysis that disease could be prevented or controlled by

minimizing close association, increasing the effectiveness of confined and quarantined individuals

with symptoms. Enahoro et al. [11] examined the COVID-19 pandemic in Nigeria through

mathematical modeling and analysis. They examined the model by applying the data gotten

from the Nigeria Center for disease control (NCDC). Okuonghae and co-authors [12] analyzed

Lagos’ COVID-19 population dynamics using a mathematical model and concluded that the

virus’s prevalence would significantly decrease if regular social isolation, mask use, and other

preventative measures were maintained. Bashir et al. [13] fostered an ideal optimal control

model for the Coronavirus (COVID-19) pandemic. Their findings demonstrated that the control

effect of increasing the number of susceptible individuals decreases the number of infectious

individuals. Mohammed and others [14] looked into a fractional-order mathematical model for the

dynamics of COVID-19 that included quarantine, isolation, and the viral load in the environment.

The model’s numerical simulation demonstrated that a 50% increase in the isolation rate of

exposed individuals will significantly reduce the number of infected cases. It would likewise be

diminished if the asymptomatic infected individual could take precautionary measures and quit

working uninhibitedly in a susceptible population. Omame et al. [9] developed a fractional-order

model for COVID-19 and tuberculosis co-infection utilizing the Atangana-Baleanu derivative.

According to their simulations, reducing the risk of COVID-19 infection among people with

inactive tuberculosis also reduces the spread of the virus and the two diseases simultaneously
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affecting a population. Using the Caputo-Fabrizio derivative and the homotopy analysis transform,

Baleanu et al. examined a fractional-order model for COVID-19 transmission in their research.

A convergent series solution was provided for the model [16]. Rezapour and others [15] also

considered a Caputo derivative-based SIR model; using reliable data and an approximate fractional

Euler solution, their model predicts the transmission of COVID-19 from one infected person to

another in Iran and around the world.

Fractional differential equations have gained wider applications in the modelling of physical and

biological processes in recent years [17–20]. It has demonstrated its importance due to its capacity

to capture the memory, hereditary, and also properties that are not local [21]. Fractional derivatives

and integrals are crucial for epidemiological modeling as they store relevant information for

recollection, which will assist with spreading disease. A lot of models to control disease circulation

have been extensively analyzed using fractional derivatives [22–26].

With the help of the Caputo fractional-order derivative, the primary goal of this study will be to

develop a novel vaccination model for COVID-19 that incorporates environmental transmission

and is tailored to actual Nigerian data. This study will significantly contribute to understanding

the effective transmission of Coronavirus in our immediate environment. The main motivation

for using the Caputo fractional derivative is that it has a unique way of dealing with pressing

issues that affect people, like an epidemic, and also allows the conventional, initial, and boundary

conditions to be taken into account [27, 28].

2 Preliminaries

Some relevant definitions and methodologies required in this paper are now highlighted in this

subsection.

Definition 1 [29] Fractional integral of order ψ > 0, ψ ∈ R+ reads

J
ψ
t f (t) =

1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1 f (ζ)dζ, t > 0,

with the symbol Γ as the Gamma function given as

Γ(ψ) =

∫
∞

0
exp(−ζ)ζψ−1dζ, Γ(ψ + 1) = ψΓ(ψ), Re{ψ} > 0,

where f (t) = 1, the fractional integral of order ψ > 0 reads

J
ψ
t (1) =

1

Γ(ψ)

∫ t

0
(t − ζ)ζ−1(1)dζ =

tψ

Γ(ψ + 1)
.

Definition 2 [29] Caputo fractional derivative of order ψ > 0, ψ ∈ R+ reads

D
ψ
t f (t) = J

n−ψ
t Dn f (t) =

1

Γ(n − ψ)

∫ t

0
(t − ζ)n−ψ−1 f (n)(ζ)dζ,
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having n as a non-negative integer giving as n − 1 < ψ ≤ n, and 0 < ψ ≤ 1, the definition above

reduces to

D
ψ
t f (t) =

1

Γ(1 − ψ)

∫ t

0
(t − ζ)−ψ f ′(ζ)dζ. (1)

Definition 3 ([29]) Caputo fractional derivatives can simply be defined as

D
ψ
t (t − t0)

q =
Γ(q + 1)(t − t0)

q−ψ

Γ(q − ψ + 1)
,

with 0 < ψ ≤ 1, q > −1.

Definition 4 Series expansion of the Mittag-Leffler of two-parameter α1, α2 type function is given as

Eα1,α2
(z) =

∞∑

r=0

zr

Γ(α1r + α2)
, α1 > 0, α2 > 0, z ∈ C. (2)

It follows from (2) that

E1,1(z) =
∞∑

r=0

zr

Γ(r + 1)
=

∞∑

r=0

zr

r!
= ez,

The renowned exponential function. Further

E1,2(z) =
∞∑

r=0

zr

Γ(r + 2)
=

∞∑

r=0

zr

(r + 1)!
=

1

z

∞∑

r=0

zr+1

(r + 1)!
=

ez
− 1

z
,

Generally

E1,n(z) =
1

zn−1
×

(

ez
−

n−2∑

r=0

zr

Γ(r + 1)

)

.

Definition 5 [29] Laplace transform of Caputo fractional derivative (1) is given as

L
{

D
ψ
t f (t)

}
= sψ f̃ (s)− sψ−1 f (0), 0 < ψ ≤ 1, (3)

with L as the Laplace transform operator, and f̃ (s) = L{ f (t)}.

Lemma 1 [30] Given ψ ∈ R+, θ1(t) and θ2(t) stand for the non-negative functions and θ3(t) stands for

both the non-negative together with the increasing function for 0 ≤ t ≤ S, S > 0, θ3(t) ≤ N, with N as a
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constant. Supposing

θ1 ≤ θ2 + θ3(t)

∫ t

0
(t − ζ)ψ−1θ1(ζ)dζ,

then

θ1 ≤ θ2Eψ

(

θ3(t)
π

Γ(1 − ψ) sin(πψ)
Sψ

)

.

3 Model formulation

At a certain time t, we represent the entire population of humans with NH(t), which we divide into

the states of being such that the occurrence of any one implies the non-occurrence of all the others

(mutually exclusive) subdivision of a population of unvaccinated susceptible individuals (SC(t)),

individuals vaccinated with the Pfizer vaccine (VC(t)), asymptomatic infectious individuals (AC(t)),

unvaccinated symptomatic infectious individuals (JU(t)), vaccinated symptomatic infectious

individuals (JV(t)) and recovered individuals (R(t)). Hence, NH(t) = SC + VC + AC + JU + JV + R.

How do we get the population of unvaccinated susceptible individuals, SC, created by bringing

in new individuals at the rate Ω. Contacts with an infected environment cause individuals

to be infected with COVID-19 and therefore reduce an entire population at the rate ϑCEV and

contacts with infected individuals at the rate:
β(ωAC+IU+ϱV IV)

NH
. The modification parameter 0 <

θ < 1, accounts for reduced probability of transmission by asymptomatic infectious individuals.

The parameter ϱV(ϱV < 1) is a modification term accounting for the reduced infectiousness

of vaccinated infectious individuals. β is the effective contact rate for transmitting COVID-19

infection from humans. ϑ is the effective contact rate for the transmission of COVID-19 infection

from the infected environment. CEV is the concentration of COVID-19 in the environment. We

can define the active changing mode by which the fractional order model for COVID-19 is being

transmitted in a population by the system of non-linear fractional differential equations in Eq. (4)

below, alongside the Table 1 depicting the connected state variables and parameters in the model

(4).

D
ψ
t SC = Ω − δSC −

(

β(ωAC + JU + ϱV JV)

NH

)

SC − ϑCEVSC − µSC,

D
ψ
t VC = δSC − (1 − ξ)

(

β(ωAC + JU + ϱV JV)

NH

+ ϑCev

)

VC − µVC,

D
ψ
t AC = p

(

β(ωAC + JU + ϱV JV)

NH

+ ϑCEV

)

SC + f (1 − ξ)

(

β(ωAC + JU + ϱV JV)

NH

+ ϑCEV

)

VC

−(γA + µ)AC, (4)

D
ψ
t JU = (1 − p)

(

β(ωAC + JU + ϱV JV)

NH

+ ϑCEV

)

SC − (γJU + dJU + µ)JU,

D
ψ
t JV = (1 − f )(1 − ξ)

(

β(ωAC + JU + ϱV JV)

NH

+ ϑCEV

)

VC − (γJV + dJV + µ)JV,

D
ψ
t R = γA AC + γJU JU + γJV JV − µR,

D
ψ
t CEV = χ1 AC + χ2 JU + χ3 JV − µEVCEV,

with the corresponding initial conditions
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SC(0) ≥ 0, VC(0) ≥ 0, AC(0) ≥ 0, JU(0) ≥ 0, JV(0) ≥ 0, R(0) ≥ 0, CEV(0) ≥ 0. (5)

Table 1. Representation of the variables in the model (4)

Variable Interpretation

Sc unvaccinated susceptible individuals

Vc Vaccinated with vaccine (Pfizer)

Ac Asymptomatic individuals (vaccinated and unvaccinated)

Ju unvaccinated symptomatic individuals

Jv Vaccinated symptomatic individuals

R Recovered humans

Cev COVID-19 concentration in the environment

Table 2. Representation of parameters in the model (4)

Parameter Interpretation Baseline Value Reference

Ω Recruitment rate 206139587
54.69×365 day−1 [31]

β Effective transmission rate of COVID-19 0.00016708 Fitted

δ COVID-19 vaccination rate 0.0059day−1 Fitted

µ Natural death rate 1
54.69×365 day−1 [31]

ξ COVID-19 vaccine efficacy 0.95 [32]

p Fraction of unvaccinated susceptible that move

to asymptomatic class 0.5 Assumed

f Fraction of vaccinated susceptible that move

to asymptomatic class 0.5 Assumed

ω Modification parameter that accounts for

reduced infectiousness of humans

in Ju class in comparison with humans

in Jv class 0.7 [12]

γa, γju, γjv Recovery rates for individuals

in the Ac, Ju, and Jv classes, respectively 0.13978day−1 [12]

µev COVID-19 removal rate from the environment 0.03day−1 Assumed

dju, djv Disease induced death rates for

individuals in the Ju, and Jv classes, respectively 0.015 [12]

χ1, χ2, χ3 Virus shedding rates from

infected humans 0.0005day−1 Assumed

Fundamentals of the model

The boundedness and positivity of the solutions prove that equations (4)-(5) are mathematically

and biologically presented.
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Invariant domain

Theorem 1 Assume SC(t), VC(t), AC(t), JU(t), JV(t), R(t), CEV(t), are solutions to the equations (4)-(5),

then

i. the set ∇ = ∇H ∪∇EV, where,

∇H =

{
(SC(t), VC(t), AC(t), JU(t), JV(t), R(t)) ∈ R

7
+ : SC + VC + AC + JU + JV + R,≤

Ω

µ

}
,

∇EV =

{
CEV : CEV ≤

(χ1 + χ2 + χ3)β

µEV

}
,

is positively invariant with regard to the governing model,

ii. each solution to the equations (4)-(5) beginning from the initial point S0, E0, I0, R0 and P0 remain

positive at every value of t ≥ 0.

Proof Let us closely observe the expression below for time t

NH = SC + VC + AC + JU + JV + R. (6)

summing up the equations corresponding to the human compartments of the model generates

D
ψ
t NH(t) = D

ψ
t SC(t) + D

ψ
t VC(t) + D

ψ
t AC(t) + D

ψ
t JU(t) + D

ψ
t JV + D

ψ
t R

= Ω − (SC + VC + AC + JU + JV + R) µ

≤ Ω − µNH.

Hence, by using Laplace transform, the inequality becomes

sψÑH(s)− sψ−1NH(0) ≤
Ω

s
− µÑH(s),

from which

ÑH(s) ≤
Ω

s(sψ + µ)
+ NH(0)

sψ−1

sψ + µ
.

By partial fraction, the above expression can be re-written as

ÑH(s) ≤
Ω

µ





1

s
−

sψ−1

µ
(

sψ

µ + 1
)



+ NH(0)
sψ−1

sψ + µ

=
Ω

µ

(

1

s

)

−

(

Ω

µ
− NH(0)

)

1

s

(

1 +
µ

sψ

)

−1
,

ÑH(s) ≤
Ω

µ

(

1

s

)

−

(

Ω

µ
− NH(0)

) ∞∑

r=0

(−µ)r

sψr+1
.
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The inverse Laplace transform with the help of (2) gives

NH(t) ≤
Ω

µ
−

(

Ω

µ
− NH(0)

) ∞∑

r=0

(−µtψ)r

Γ(ψr + 1)

≤
Ω

µ
−

(

Ω

µ
− NH(0)

)

Eψ

(

−µtψ
)

.

It follows that as t → ∞

0 ≤ NH ≤
Ω

µ
, (7)

of which the requirements that make equations (4)-(5) bounded and also indicate that there is an

achievable possible region. ■

Positivity

Suppose that by contradiction, the third equation of the model is not true.

Let t1 = min{t : SC(t)VC(t)AC(t)JU(t)JV(t)R(t)CEV(t) = 0}. Suppose AC(t1) = 0, it suggest that

SC(t) > 0, VC(t) > 0, AC(t) > 0, JU(t) > 0, JV(t) > 0, R(t) > 0, CEV(t) > 0, for all [0, t1], suppose by

assumption, the expression below exists,

Θ1 = min
0≤t≤t1{

P

(

β(ωAC + JU + ϱV JV) + ϑCEV

AC

)

SC + f (1 − ξ)

(

β(ωAC + JU + ϱV JV) + ϑCEV

AC

)

VC − (γA + µ)

}
.

It follows that

D
ψ
t AC(t)− Θ1 AC(t) > 0. (8)

We state (without proof) that continuous function Φ1 can be established in a way that the equation

below is discovered

D
ψ
t AC(t)− Θ1 AC(t) = −Φ1(t).

With the Laplace transform, the last equality becomes

sψ ÃC(sC)− sψ−1 AC(0)− Θ1 ÃC(s) = −Φ̃1(s),

from which

ÃC(s) = AC(0)
sψ−1

sψ
− Θ1

−

Φ1(s)

sψ
− Θ1

=
AC(0)

s

(

1 −

Θ1

sψ

)

−1

−

Φ1(s)

sψ

(

1 −

Θ1

sψ

)

−1

= AC(0)
∞∑

r=0

Θr
1

sψr+1
− Φ1(s)

∞∑

r=0

Θr
1

sψr+ψ
.

The inverse Laplace transform using the Mittag-Leffler function and forgetting the non-positive

term produces a solution to the above terms in (8) that meets the expression below.
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AC(t) > AC(0)
∞∑

r=0

(Θ1tψ)r

Γ(ψr + 1)
= AC(0)Eψ

(

Θ1tψ
)

.

Hence, the positivity of the solution AC is as follows:

AC(t) > AC(0)Eψ

(

Θ1tψ
)

> 0,

which contradicts AC(t1) = 0. Similarly, suppose JU(t1) = 0 which implies that SC(t) > 0,

VC(t) > 0, AC(t) > 0, JV(t) > 0, R(t) > 0, CEV > 0, for all 0 ≤ t ≤ t1. Assume the expression is true

Θ2 = min
0≤t≤tt

{
(1 − p)

(

β(ωAC + JU + ϱV JV) + ϑCV

JU

)

SC − (γJU + dJU + µ)

}
,

then

D
ψ
t JU(t) > Θ2 JU(t). (9)

It follows that a continuous function Φ2(t) may be established in a way that the equation below is

discovered

D
ψ
t JU(t)− Θ2 JU(t) = −Φ2(t).

With the Laplace transform, the equation becomes

sψ J̃U(s)− sψ−1 JU(0)− Θ2 J̃U(s) = −Φ̃2(s),

from which

J̃U(s) = JU(0)
sψ−1

sψ
− Θ2

−

Φ2(s)

sψ
− Θ2

= JU(0)
∞∑

r=0

Θr
2

sψr+1
− Φ2(s)

∞∑

r=0

Θr
2

sψr+ψ
.

Using the inverse Laplace transform, applying the Mittag-Leffler function, and forgetting the

non-positive term, the solution to the equation (9) meets that of the quantity below

JU(t) > JU0)
∞∑

r=0

(Θ2tψ)r

Γ(ψr + 1)
= JU(0)Eψ

(

Θ2tψ
)

.

Hence, the positivity of the solution IU is as follows

JU(t) > JU(0)Eψ

(

Θ2tψ
)

> 0,

which contradicts JU(t1) = 0. Applying the similar method of solution to the question above, we

assume JV(t1) = 0 which suggests that SC(t) > 0, VC(t) > 0, AC(t) > 0, JU, R(t) > 0, CEV(t) > 0 for
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all 0 ≤ t ≤ t1. Suppose the expression below is true

Θ3 = min
0≤t≤tt

{
(1 − f ) (1 − ξ)

(

β(ωAC + JU + ϱV JV)

JV

+ ϑCEV

)

VC − (γJV + dJV + µ)

}
.

So that

D
ψ
t JV(t) > Θ3 JV(t). (10)

It follows that a continuous function Φ3(t) can be established in a way that the equation below is

discovered

D
ψ
t JV(t)− Θ3 JV(t) = −Φ3(t).

By using the Laplace transform, the above inequality becomes

sψ J̃V(s)− sψ−1 JV(0)− Θ3 J̃V(s) = −Φ̃3(s),

from which

J̃V(s) = JV(0)
∞∑

r=0

Θr
3

sψr+1
− Φ3(s)

∞∑

r=0

Θr
3

sψr+ψ
.

Applying the inverse Laplace transform using the Mittag-Leffler function and forgetting the

non-positive term, the solution to the equation (10) meets that of the expression below.

JV(t) > JV(0)
∞∑

r=0

(Θ3tψ)r

Γ(ψr + 1)
= JV(0)Eψ

(

Θ3tψ
)

. (11)

Hence, the positivity of the solution JV is as follows

JV(t) > JV(0)Eψ

(

Θ3tψ
)

> 0,

which is not in agreement with the fact that JV(t1) = 0. Likewise, assuming CEV(t1) = 0 which

suggest that SC(t) > 0, VC(t) > 0, AC(t) > 0, JV(t) > 0, R(t) > 0, CEV > 0, for all 0 ≤ t ≤ t1.

Supposing the expression below is true

Θ4 = min
0≤t≤tt

{(
χ1 AC + χ2 JU + χ3 JV

CEV

− µEV

)}
,

then

D
ψ
t CEV(t) > Θ4CEV(t). (12)



88 | Bulletin of Biomathematics, 2023, Vol. 1, No. 1, 78–110

It follows that a continuous function Φ4(t) can be established in a way the equation below is

discovered

D
ψ
t CEV(t)− Θ4CEV(t) = −Φ4(t).

By using the Laplace transform, the inequality becomes

sψC̃EV(s)− sψ−1CEV(0)− Θ4C̃EV(s) = −Φ̃4(s),

from which

C̃EV(s) = CEV(0)
sψ−1

sψ
− Θ4

−

Φ4(s)

sψ
− Θ4

= CEV(0)
∞∑

r=0

Θr
4

sψr+1
− Φ4(s)

∞∑

r=0

Θr
4

sψr+ψ
.

Applying the inverse Laplace transform using the Mittag-Leffler function and forgetting the

non-positive term, the solution to equation (12) meets that of the quantity below.

CEV(t) > CEV0)
∞∑

r=0

(Θ4tψ)r

Γ(ψr + 1)
= CEV(0)Eψ

(

Θ4tψ
)

.

Hence, the positivity of the solution JU is as follows

CEV(t) > CEV(0)Eψ

(

Θ4tψ
)

> 0,

which contradicts CEV(t1) = 0. Furthermore, the same method of solution will prove that the

positivity of the solutions SC, VC, R and CEV are as follows

SC(t) > SC(0)Eψ

(

Θ5tψ
)

> 0, VC(t) > VC(0)Eψ

(

Θ6tψ
)

> 0,

R(t) > R(0)Eψ

(

Θ7tψ
)

> 0, CEV(t) > CEV(0)Eψ

(

Θ8tψ
)

> 0.

Existence and uniqueness of the solution

This section shows the proof of existence and uniqueness of the solution of fractional model (4)-(5).

The same solution method in [33] is employed here using the theorem of Banach fixed point and

Picard’s operator. Furthermore, for existence, Schauder’s fixed point theorem will be applied in

which the boundedness of the solution shall be proven, too.

The use of fractional integral together with the Caputo fractional derivative model (4) of order

ψ > 0 alongside its corresponding initial conditions (5) present the Volterra-integral equations of
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the second kind below as well as a solution to the fractional model.

SC (t)− SC (0) =
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1L(ζ, SC (ζ))dζ,

VC (t)− VC (0) =
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1 M(ζ, VC (ζ))dζ,

AC (t)− AC (0) =
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1N(ζ, AC (ζ))dζ,

JU (t)− JU (0) =
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1O(ζ, JU (ζ))dζ, (13)

JV (t)− JV (0) =
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1P(ζ, JV (ζ))dζ,

R (t)− R (0) =
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1V(ζ, R (ζ))dζ,

CEV (t)− CEV (0) =
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1Z(ζ, CEV (ζ))dζ.

The functions (L, M, N, O, P, V, Z) : [0, b] → R × R without proof are presumed to be continuous

in such a way that the Banach space, as well as the space of all the continuous functions, are

(R, ∥.∥) and H1([0,b]) respectively which is defined in [0, b] → R formed alongside Chebyshev

norm.

The next thing we want to do is to show if the continuous functions L, M, N, O P, V, and Z meet

the Lipschitz conditions provided

sup
0<t≤S

∥

∥

∥

∥

AC

NH

∥

∥

∥

∥

≤ φ1, sup
0<t≤S

∥

∥

∥

∥

JU

NH

∥

∥

∥

∥

≤ φ2, sup
0<t≤S

∥

∥

∥

∥

JV

NH

∥

∥

∥

∥

≤ φ3, sup
0<t≤S

∥

∥

∥

∥

CEV

NH

∥

∥

∥

∥

≤ φ4.

Thus, firstly we get

∥L(Sc1)− L(Sc2)∥ =

∥

∥

∥

∥

Ω −

(

δ +
β (ωAC + JU + ϱV JV)

ϑ
CEV + µ

)

Sc1

−

(

Ω −

(

δ +
β (ωAC + JU + ϱV JV)

NH

+ ϑCEV + µ

)

Sc2

)∥

∥

∥

∥

=

∥

∥

∥

∥

−

βωAC

NH

(Sc1 − Sc2)−
βJU

NH

(Sc1 − Sc2)−
βϱV JV

NH

(Sc1 − Sc2)− ϑCEV (Sc1 − Sc2)

− µ (Sc1 − Sc2)∥ (14)

≤ βω sup
0≤t≤S

∥

∥

∥

∥

AC

NH

∥

∥

∥

∥

∥Sc1 − Sc2∥+ β sup
0≤t≤S

∥

∥

∥

∥

JU

NH

∥

∥

∥

∥

∥Sc1 − Sc2∥

+ϑ sup
0≤t≤S

∥CEV∥ ∥Sc1 − Sc2∥+ µ ∥Sc1 − Sc2∥+ βϱV sup
0≤t≤S

∥

∥

∥

∥

JV

NH

∥

∥

∥

∥

∥Sc1 − Sc2∥

≤ LL ∥Sc1 − Sc2∥ ,

where

LL = (βωφ1 + βφ2 + βϱV φ3 + ϑCEV + µ) > 0.
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Secondly,

∥M(V1)− M(V2)∥ =

∥

∥

∥

∥

δSC − (1 − ξ)

(

β(ωAC + JU + ϱV JV)

NH

+ ϑCEV

)

Vc1

−

(

δSC − (1 − ξ)

(

β(ωAC + JU + ϱV JV)

NH

+ ϑCEV + µ

)

Vc2

)∥

∥

∥

∥

= −

(

δSC + (1 − ξ)

(

β(ωAC + JU + ϱV JV)

NH

+ ϑCEV + µ

))

∥Vc1 − Vc2∥

=

(

(1 − ξ) βω sup
0≤t≤S

∥

∥

∥

∥

AC

NH

∥

∥

∥

∥

+ (1 − ξ) β sup
0≤t≤S

∥

∥

∥

∥

JU

NU

∥

∥

∥

∥

(15)

+ (1 − ξ) βϱV sup
0≤t≤S

∥

∥

∥

∥

JV

NH

∥

∥

∥

∥

+ δSC + ϑCEV + µ

)

∥Vc1 − Vc2∥

≤ LM ∥Vc1 − Vc2∥ ,

where

LM = ((1 − ξ) βωφ5 + (1 − ξ) βφ3 + (1 − ξ) βϱV φ4 + δS + ϑCEV + µ) > 0.

Applying the same method below, we get

∥N(Ac1)− N(Ac2)∥ =

∥

∥

∥

∥

(

− (γA + µ) AC + P

(

β (ωAC + JU + ϱV JV)

NH

+ ϑEV

)

SC

)∥

∥

∥

∥

+

∥

∥

∥

∥

f (1 − ξ)

((

β (ωAC + JU + ϱV JV)

NH

+ ϑCEV

))

Ac1

∥

∥

∥

∥

−

∥

∥

∥

∥

(

− (γA + µ) AC + P

(

β (ωAC + JU + ϱV JV)

NH

+ ϑCEV

)

SC

)∥

∥

∥

∥

(16)

+

∥

∥

∥

∥

f (1 − ξ)

((

β (ωAC + JU + ϱV JU)

NH

+ ϑCEV

)

Ac2

)∥

∥

∥

∥

= (γA + µ) ∥Ac1 − Ac2∥

≤ LN ∥Ac1 − Ac2∥ ,

where

LN = (γA φ5 + µφ3) > 0.

∥O(Ju1)−O(Ju2)∥ =

∥

∥

∥

∥

(1 − P)

(

β (ωAC + JU + ϱV JV)

NH
+ ϑCEV

)

SC − ((γJU + dJU + µ)) Ju1

− (1 − P)

(

β (ωAC + JU + ϱV JV)

NH
+ ϑCEV

)

SC − ((γJU + dJU + µ) Ju2)

∥

∥

∥

∥

≤ LO ∥Ju1 − Ju2∥ , (17)

where

LO = (γJJU φ1 + dJJU φ2 + µ) > 0.
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∥P(Jv1)− P(Jv2)∥ =

∥

∥

∥

∥

(1 − f ) (1 − ξ)

(

β (ωAC + JU + ϱV JV)

NH

+ ϑCEV

)

SC − (γJV + dJV + µ) Jv1

− (1 − f ) (1 − ξ)

(

β (ωAC + JU + ϱV JV)

NH

+ ϑCEV

)

SC − ((γJV + dJV + µ) Jv2)

∥

∥

∥

∥

≤ LP ∥Jv1 − Jv2∥ , (18)

where

LP = (γJV φ2 + dJV φ3 + µ) > 0.

∥V(R1)− V(R2)∥ = ∥γA A + γJU JU + γJV JV − (µ) R1 − (γA A + γJU IU + γJV IV − (µ) R2)∥

≤ LV ∥R1 − R2∥ , (19)

where

LV = (µ) > 0.

∥Z(CEV1)− Z(CEV2)∥ = ∥χ1 AC + χ2 JU + χ3 JV − (µEV)CEV1 − (χ1 AC + χ2 JU + χ3 JV − (µEV))CEV2∥

≤ ŁZ ∥CEV1 − CEV2∥ . (20)

where

LZ = (µEV) > 0.

Theorem 2 If (LL, LM, LN , LO, LP, LV , LZ)
Γ(1−ψ) sin(πψ)Tψ

ψπ < 1, it follows that the fractional model

(4)- (5) has a unique solution on [0, b]where (L, M, N, O, P, V, Z) : [0, b]× R → R are presumed to be

continuous meeting the Lipschitz condition.

Proof Observe the mapping below η : H1 ([0, b], R) → H1 ([0, b], R), with a well defined η in

(L, M, N, O, P, V, Z) : [0, b]× R → R. Using (15)-(20) and for all ((Sc1, Sc2), (Vc1, Vc2), (Ac1, Ac2),

(JU1, JU2), (JV1, JV2), (R1, R2), (CEV1, CEV2), ∈ H1 ([0, b], R) and 0 ≤ t ≤ S we get

∥η(Sc1(t))− η(Sc2(t))∥ =

∥

∥

∥

∥

Sc(0) +
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1 L (ζ, Sc1(ζ)) dζ

∥

∥

∥

∥

−

∥

∥

∥

∥

(

Sc(0) +
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1 L (ζ, Sc2(ζ)) dζ

)∥

∥

∥

∥

(21)

≤
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1 ∥L(ζ, Sc1(ζ))− L(ζ, Sc2(ζ))∥ dζ

≤
LL

Γ(ψ)

∫ t

0
(t − ζ)ψ−1 ∥Sc1(ζ)− Sc2(ζ)∥ dζ

≤ LL

(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)

∥Sc1 − Sc2∥H1 .
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Similar process yields

∥η(Vc1(t))− η(c2(t))∥ ≤ LM

(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)

∥Vc1 − Vc2∥H1 ,

∥η(Ac1(t))− η(Ac2(t))∥ ≤ LN

(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)

∥Ac1 − Ac2∥H1 ,

∥η(Ju1(t))− η(Ju2(t))∥ ≤ LO

(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)

∥JU1 − JU2∥H1 , (22)

∥η(Jv1(t))− η(Jv2(t))∥ ≤ LP

(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)

∥Jv1 − Jv2∥H1 ,

∥η(R1(t))− η(R2(t))∥ ≤ LV

(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)

∥R1 − R2∥H1 ,

∥η(CEV1(t))− η(CEV2(t))∥ ≤ LZ

(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)

∥CEV1 − CEV2∥H1 .

The condition clearly shows that (LL, LM, LN , LO, LP, LV , LZ)
Γ(1−ψ) sin(πψ)Sψ

ψπ < 1, the parameter η

is a contraction mapping and application of the Banach contraction mapping principle, signifying

that the parameter η has a unique fixed point in 0 ≤ t ≤ S. ■

Using the theorems of Schauder’s fixed point, the existence of solutions of fractional model (4)- (5)

shall be considered.

Theorem 3 Assuming that (L, M, N, O, P, V, Z) : [0, b]× R → R are continuous and that there is a

constants
(

LF1, LG1, LH1, LK1, LQ1, LU1, LW1

)

> 0

so that

∥F(t, SC)∥ ≤ LF1 (d + ∥SC∥) , ∥G(t, VC)∥ ≤ LG1 (d + ∥VC∥) , ∥H(t, AC)∥ ≤ LH1 (d + ∥AC∥) ,

∥K(t, JU)∥ ≤ LK1 (d + ∥JU∥) , ∥Q(t, JV)∥ ≤ LQ1 (d + ∥JV∥) , ∥U(t, R)∥ ≤ LU1 (d + ∥R∥) ,

∥W(t, CEV)∥ ≤ LW1 (d + ∥CEV∥) , with 0 < d ≤ 1 as an arbitrary number, it follows that (4)- (5) possesses

a minimum of one solution.

Proof From (22), it is clear that the operator η is continuous. Thus let {Sn+1
C

}∞, {Vn+1
C

}∞, {An+1
C

}∞,

{Jn+1
U

}∞, {Jn+1
V

}∞, {Rn+1}∞, {Cn+1
EV

}∞, be sequences so that Sn+1
C

→ Sn
C
, Vn+1

C
→ Vn

C
, An+1

C
→ An

C
,

Jn+1
U

→ Jn
U

, Jn+1
V

→ Jn
V

, Rn+1 → Rn, Cn+1
EV

→ Cn
EV

, in H1 ([0, b], R). Then for every 0 ≤ t ≤ S we get

∥

∥

∥ηSn+1
C

(t)− ηSn
C
(t)
∥

∥

∥ =
1

Γ(ψ)

∥

∥

∥

∥

∫ t

0
(t − ζ)ψ−1 F

(

ζ, Sn+1
C

(ζ)
)

dζ −

∫ t

0
(t − ζ)ψ−1 F (ζ, Sn

C
(ζ)) dζ

∥

∥

∥

∥

,

≤
1

Γ(ψ)

∫ h

0
(t − ζ)ψ−1

∥

∥

∥
F(ζ,n+1 (ζ))− F(ζ, Sn

C
(ζ))

∥

∥

∥
dζ,

≤
LF1Sψ

Γ(ψ + 1)

∥

∥

∥
Sn+1

C
)− Sn

C

∥

∥

∥
,

≤ LF1

(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)

∥

∥

∥Sn+1
C

− Sn
C

∥

∥

∥

H1
, (23)

where
∥

∥Sn+1
C

− Sn
C

∥

∥

H
→ 0 as n → ∞.
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Following the method of solution, we have

∥

∥

∥ηVn+1
C

(t)− ηVn
C
(t)
∥

∥

∥ ≤ LG1

(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)

∥

∥

∥Vn+1
C

− Vn
C

∥

∥

∥

H1
,

∥

∥

∥
ηAn+1

C
(t)− ηAn

C
(t)
∥

∥

∥
≤ LH1

(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)

∥

∥

∥
An+1

C
− An

C

∥

∥

∥

H1
,

∥

∥

∥
η Jn+1

U
(t)− η Jn

U
(t)
∥

∥

∥
≤ LK1

(

Γ(1 − ψ) sin(πψ)Tψ

ψπ

)

∥

∥

∥
Jn+1

U
− Jn

U

∥

∥

∥

H1
,

∥

∥

∥
η Jn+1

V
(t)− η Jn

V
(t)
∥

∥

∥
≤ LQ1

(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)

∥

∥

∥
Jn+1

V
− Jn

V

∥

∥

∥

H1
,

∥

∥

∥
ηRn+1(t)− ηRn(t)

∥

∥

∥
≤ LU1

(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)

∥

∥

∥
Rn+1

− Rn
∥

∥

∥

H1
,

∥

∥

∥ηCn+1
EV

(t)− ηCn
EV
(t)
∥

∥

∥ ≤ LW1

(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)

∥

∥

∥Cn+1
EV

− Cn
EV

∥

∥

∥

H1
,

where
∥

∥Vn+1
C

− Vn
C

∥

∥

H1 → 0,
∥

∥An+1
C

− An
C

∥

∥

H∗1
→ 0,

∥

∥Jn+1
U

− Jn
U

∥

∥

H1 → 0,
∥

∥Jn+1
V

− Jn
V

∥

∥

H1 → 0,
∥

∥Rm+1
− Rn

∥

∥

H1 → 0,
∥

∥Cn+1
EV

− Cn
EV

∥

∥

H1 → 0, Hence, the operator η is continuous. ■

Next we show that the operator η is a one-to-one bounded set of H1 ([0, b], R). Therefore, for every

SC ∈ MSc, VC ∈ MVc, AC ∈ MAc, JU ∈ MJU
, JV ∈ MJV

, R ∈ MR, CEV ∈ MCEV
, also for y > 0, there

is a corresponding value z > 0 where ∥ηSC∥ ≤ z, ∥ηSC∥ ≤ z, ∥ηVC∥ ≤ z, ∥ηAC∥ ≤ z, ∥η JU∥ ≤ z,

∥η JV∥ ≤ z, ∥ηR∥ ≤ z, ∥ηCEV∥ ≤ z. The subset of Banach space of all continuous functions on the

interval 0 ≤ t ≤ S are given as follows

BS =
{

SC ∈ H
1 ([0, b], R) : ∥SC∥ ≤ y

}
, MVc =

{
V ∈ H

1 ([0, b], R) : ∥VC∥ ≤ y
}

,

MAc =
{

AC ∈ H
1 ([0, b], R) : ∥AC∥ ≤ y

}
, MJU

=
{

JU ∈ H
1 ([0, b], R) : ∥JU∥ ≤ y

}
,

MJV
=

{
JV ∈ H

1 ([0, b], R) : ∥JV∥ ≤ y
}

, MR =
{

R ∈ H
1 ([0, b], R) : ∥R∥ ≤ y

}
,

BCEV
=

{
CEV ∈ H

1 ([0, b], R) : ∥CEV∥ ≤ y
}

.

Thus for any 0 ≤ t ≤ S,

∥ηSC∥ ≤ ∥Sc(0)∥+
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1 ∥F(ζ, SC(ζ))∥ dζ

≤ ∥S(0)∥+
∥F(ζ, SC(ζ))∥

Γ(ψ)

∫ t

0
(t − ζ)ψ−1dζ

≤ ∥S(0)∥+ LF1 (d + ∥SD∥)

(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)

≤ ∥S(0)∥+ LF1 (d + y)

(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)

= z.
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Applying the same method of solution, we have the following set of solutions.

∥ηVC∥ ≤ ∥V(0)∥+ LG1 (d + y)

(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)

,

∥ηAC∥ ≤ ∥A(0)∥+ LH1 (d + y)

(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)

,

∥η JU∥ ≤ ∥JU(0)∥+ LK1 (d + y)

(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)

,

∥η JV∥ ≤ ∥JV(0)∥+ LQ1 (d + y)

(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)

,

∥ηR∥ ≤ ∥R(0)∥+ LU1 (d + y)

(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)

,

∥ηCEV∥ ≤ ∥CEV(0)∥+ LW1 (d + y)

(

Γ(1 − ψ) sin(πψ)Sψ

ψπ

)

.

Let Φ maps bounded set together with equal continuous sets in H1 ([0, b], R). Assuming that

0 ≤ t1 ≤ t2 ≤ S, SC ∈ MSc, VC ∈ MVc, AC ∈ MAc, JU ∈ MJU
, JV ∈ MJV

, R∈MR, CEV ∈ MCEV
, with

t1, t2 ∈ [0, b], it follows that

∥ηSC(t1)− ηSC(t2)∥ =
1

Γ(ψ)

∥

∥

∥

∥

∫ t1

0
(t1 − ζ)ψ−1F(ζ, SC(ζ))−

∫ t2

0
(t2 − ζ)ψ−1F(ζ, SC(ζ))

∥

∥

∥

∥

dζ

≤
1

Γ(ψ)

∥

∥

∥

∥

∫ t1

0

(

(t1 − ζ)ψ−1
− (t2 − ζ)ψ−1

)

F(ζ, SC(ζ))dζ

∥

∥

∥

∥

+
1

Γ(ψ)

∥

∥

∥

∥

∫ t2

t1

(t2 − ζ)ψ−1F(ζ, SC(ζ))dζ

∥

∥

∥

∥

≤
LF1 (d + y)

Γ(ψ)

∥

∥

∥

∥

∫ t1

0

(

(t1 − ζ)ψ−1
− (t2 − ζ)ψ−1

)

dζ +

∫ t2

t1

(t2 − ζ)ψ−1dζ

∥

∥

∥

∥

≤

(

LF1 (d + y) Γ(1 − ψ) sin(πψ)

ψπ

)

(

t
ψ
1 − t

ψ
2 + 2(t2 − t1)

ψ
)

.

Applying the same method of solution, we have the following

∥ηVC(t1)− ηVC(t2)∥ ≤

(

LG1 (d + y) Γ(1 − ψ) sin(πψ)

ψπ

)

(

t
ψ
1 − t

ψ
2 + 2(t2 − t1)

ψ
)

,

∥ηAC(t1)− ηAC(t2)∥ ≤

(

LH1 (d + y) Γ(1 − ψ) sin(πψ)

ψπ

)

(

t
ψ
1 − t

ψ
2 + 2(t2 − t1)

ψ
)

,

∥η JU(t1)− η JU(t2)∥ ≤

(

LK1 (d + y) Γ(1 − ψ) sin(πψ)

ψπ

)

(

t
ψ
1 − t

ψ
2 + 2(t2 − t1)

ψ
)

,

∥η JV(t1)− η JV(t2)∥ ≤

(

LQ1 (d + y) Γ(1 − ψ) sin(πψ)

ψπ

)

(

t
ψ
1 − t

ψ
2 + 2(t2 − t1)

ψ
)

,

∥

∥

∥
ηR(t1)− ηR(t2)

∥

∥

∥
≤

(

LU1 (d + y) Γ(1 − ψ) sin(πψ)

ψπ

)

(

t
ψ
1 − t

ψ
2 + 2(t2 − t1)

ψ
)

,

∥ηCEV(t1)− ηCEV(t2)∥ ≤

(

LW1 (d + y) Γ(1 − ψ) sin(πψ)

ψπ

)

(

t
ψ
1 − t

ψ
2 + 2(t2 − t1)

ψ
)

.
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As t1 approaches t2, the right-hand side of the inequalities approaches zero. The operator η is

proven to be a continuous function using the Arzola-Ascoli theorem. Hitherto, the fact that η

maps bounded sets together with another set has been shown. In addition to that, the operator

is also continuous. Lastly, we would prove that R(η) = {(SC, VC, AC, JU, JV R, CEV) ∈ H1 ([0, b], R) :

(SC, VC, AC, JU, JV, R, CEV) = Λ (SC, VC, AC, JU, JV, R, CEV)} is bounded for some Λ ∈ (0, 1) using Lemma

(1). Assuming that (SC, VC, AC, JU, JV, R, CEV, ) ∈ R(η), so that

(SC, VC, AC, JU, JV, R, CEV) = Λη (SC, VC, AC, JU, JV, R, CEV), it follows that for every t ∈ [0, b] gives

∥SC(t)∥ ≤ SC(0) +
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1 ∥F(ζ, SC(ζ))∥ dζ

≤ SC(0) +
LF1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1 (d + ∥SC(ζ)∥) dζ

≤ SC(0) +
cLF1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1 dζ +

LF1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1 ∥SC(ζ)∥ dζ (24)

≤ SC(0) +

(

LF1
Γ(1 − ψ) sin(πψ)Sψ

ψπ

)

+

(

LF1Γ(1 − ψ) sin(πψ)

π

) ∫ t

0
(t − ζ)ψ−1 ∥SC(ζ)∥ dζ

≤

(

SC(0) +
LF1Γ(1 − ψ) sin(πψ)Sψ

ψπ
Eψ

(

LF1Tψ
)

)

< ∞.

As already proven, R(η) is bounded and using Schauder’s fixed point theorem, the operator η has

a fixed point and hence the solution of the fractional model.

Basic reproduction number of the model

To get the disease-free equilibrium (DFE) of the model, the right-hand side of the equations of the

model (4) is set to zero which is as follows,

ξ0 = (SC(0), VC(0), AC(0), JU(0), JV(0), R(0), CEV(0)) =
(

Ω

δ + µ
,

δΩ

µ (δ + µ)
, 0, 0, 0, 0, 0

)

. (25)

To get the linear stability of the disease-free equilibrium ξ0, we apply the method of the next

generation operator on the model (4). The matrix F (of new infection) and the matrix V (of the

transfer of infections in and out of the disease compartments), respectively, are as follows

F =













pβωQH
NH

pβQH
NH

pβϱV QH
NH

pϑQH
(1−p)βωSc

NH

(1−p)βSc
NH

(1−p)βϱVSc
NH

(1 − p)ϑSc
(1− f )(1−ξ)βωVc

NH

(1− f )(1−ξ)βVc
NH

(1− f )(1−ξ)βϱVVc
NH

(1 − f )(1 − ξ)ϑVc

0 0 0 0













,

with QH = Sc + f (1 − ξ)Vc,

V =









γA + µ 0 0 0

0 γIU + dJU + µ 0 0

0 0 γIV + dJV + µ 0

−χ1 −χ2 −χ3 µEV









.

Therefore, the basic reproduction number of the fractional order vaccination model for COVID-

19 incorporating environmental transmission denoted by R0 = max{R0H,R0EV}, where R0H is
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human to human transmission, and R0EV is environment to human transmission, respectively. The

associated reproduction numbers are given by

R0H =
βω (θ1ηAQH + (1 − p)S∗

C
+ V∗

C
ηv)

N∗
HG1G2G3

,

and

R0EV =
β (χ1 + (1 − p)S∗

C
χ2 + V∗

C
χ3)

µEV

,

where,

G1 = γA +µ, G2 = γIU + dJU +µ, G3 = γJV + dJV +µ, QH = S∗
C
+ f (1 − ξ)V∗

C
, VC = (1 − f ) (1 − ξ)V∗

C
.

Local asymptomatic stability of the disease-free equilibrium

Theorem 4 The condition for the DFE, N0 of the model (4) to be locally asymptotically stable (LAS) is that

the reproduction number must be less than 1, i.e Rc < 1, and unstable when the reproduction number is

greater than 1, i.e Rc > 1.

Proof To get the local stability of the model (4), we carried out the Jacobian matrix of the system

(4) and computed it using the value gotten at the disease-free equilibrium given as follows:































−(µ + δ) 0
−βωS∗

C

N∗
H

−βS∗
C

N∗
H

−βϱvS∗
C

N∗
H

0 ϑS∗
C

δ −µ
−(1−ξ)βωV∗

C

N∗
H

−(1−ξ)βV∗
C

N∗
H

−(1−ξ)βϱvV∗
C

N∗
H

0 (1 − ξ)ϑV∗
C

0 0
pβωS∗

C+ f )(1−ξ)βωV∗
C

N∗
H

− G1
pβS∗

C+ f (1−ξ)βV∗
C

N∗
H

pβϱvS∗
C+ f (1−ξ)βϱVV∗

C

N∗
H

0 pϑS∗
C
+ f (1 − ξ)ϑV∗

C

0 0
(1−p)βωS∗

C

N∗
H

(1−p)βS∗
C

N∗
H

− G2
(1−p)βϱvS∗

C

N∗
H

0 (1 − p)ϑS∗
C

0 0
(1− f )(1−ξ)βωV∗

C

N∗
H

(1− f )(1−ξ)βV∗
C

N∗
H

(1− f )(1−ξ)βϱvV∗
C

N∗
H

− G3 0 (1 − f )(1 − ξ)ϑV∗
C

0 0 γA γJU γJV −µ 0

0 0 χ1 χ2 χ3 0 −µEV































.

The first four eigenvalues are λ1 = −(µ + δ), λ2 = −µ(twice), λ3 = −µEV, while the remaining

three eigenvalues are obtained from the solutions of the equations below

(NH + (−1 + p)SH β1)− ((λ + G2)VH β1ηv(1 − R0P))− ((λ + G2)(λ + G3)QH β1ηAθ1(1 − R0C)) = 0. (26)

Following the method of the Routh-Hurwitz, the above equations will possess roots with negative

real parts ⇐⇒ R0H < 1 and R0EV < 1 respectively. Hence, the DFE J(N0) is locally asymptotically

stable if R0 = max {R0H,R0EV} < 1.

Epidemiologically, the above result implies that the prevalence of COVID-19 can be eradicated

from the population provided R0 < 1 and if the initial sizes of the population of the model are in

the region of attraction of the DFE.

Generalized Ulam-Hyers-Rassias stability

In this section, the approach by Liu [30] shall be applied to prove that the fractional model is

generalized UHR stable. Following [30], the definition below holds:

Definition 6 The fractional model (4)- (5) is generalized Ulam-Hyers-Rassias (UHR) stable with regards

to Υ(t) ∈ H1([0, b], R) provided there is a real value Σψ > 0 so that ϵ > 0 and for every solution
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(SC, VC, AC, JU, JV, R, CEV, ) ∈ H1([0, b], R) of the inequalities below

∣

∣

∣
D

ψ
t SC(t)− F(t, SC(t))

∣

∣

∣
≤ Υ(t),

∣

∣

∣
D

ψ
t VC(t)− G(t, VC(t))

∣

∣

∣
≤ Υ(t),

∣

∣

∣
D

ψ
t AC(t)− H(t, AC(t))

∣

∣

∣
≤ Υ(t),

∣

∣

∣
D

ψ
t JU(t)− K(t, JU(t))

∣

∣

∣
≤ Υ(t),

∣

∣

∣
D

ψ
t JV(t)− Q(t, JV(t))

∣

∣

∣
≤ Υ(t),

∣

∣

∣
D

ψ
t R(t)− U(t, R(t))

∣

∣

∣
≤ Υ(t),

∣

∣

∣
D

ψ
t CEV(t)−W(t, CEV(t))

∣

∣

∣
≤ Υ(t),

there is a solution (S̄C, V̄C, ĀC, J̄U, J̄V, R̄, ,̄C̄EV) ∈ H1([0, b], R) of the fractional model (4)-(5) with

∣

∣SC(t)− S̄C(t)
∣

∣ ≤ ΣψΥ(t),
∣

∣VC(t)− V̄C(t)
∣

∣ ≤ ΣψΥ(t),
∣

∣AC(t)− ĀC(t)
∣

∣ ≤ ΣψΥ(t),
∣

∣JU(t)− J̄U(t)
∣

∣ ≤ ΣψΥ(t),

∣

∣JV(t)− J̄V(t)
∣

∣ ≤ ΣψΥ(t),
∣

∣R(t)− R̄(t)
∣

∣ ≤ ΣψΥ(t),
∣

∣CEV(t)− C̄EV(t)
∣

∣ ≤ ΣψΥ(t).

Theorem 5 The fractional model (4)- (5) is generalized Ulam-Hyers-Rassias stable with regards to Υ ∈

H1([0, b], R) if
(

LF, LG, LH, LK, LQ, LU , LW

)

Sψ
< 1.

Proof From definition (6), let Υ stand for the non-decreasing function of t, then there is ϵ > 0 so

that

∫ t

0
(t − ζ)ψ−1

Υ(ζ)dζ ≤ ϵΥ(t),

for every t ∈ [0, b]. The functions F, G, H, K, Q, U, W according to prove is said to be continuous

and

(LF, LG, LH, LK, LQ, LU , LW) > 0

meets the Lipschitz condition as seen in the previous part. From Theorem (2), the fractional model

(4)- (5) has the unique solution

S̄C(t) = SC(0) +
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1F(ζ, S̄C(ζ))dζ.

Integrating the inequalities in definition (6) we get

∣

∣

∣

∣

SC(t)− SC(0)−
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1F(ζ, SC(ζ))dζ

∣

∣

∣

∣

≤
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1

Υ(ζ)dζ

≤
ϵΥ(t)Γ(1 − ψ) sin(πψ)

π
. (27)
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Using Lemma (1) and Eq. (27), we have the following

∣

∣SC(t)− S̄C(t)
∣

∣ ≤

∣

∣

∣

∣

SC(t)−

(

SC(0) +
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1F(ζ, S̄C(ζ))dζ

)∣

∣

∣

∣

≤

∣

∣

∣

∣

SC(t)− SC(0)−

(

1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1F(ζ, S̄C(ζ))dζ +

1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1F(ζ, SC(ζ))dζ

−

1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1F(ζ, SC(ζ))dζ

)∣

∣

∣

∣

≤

∣

∣

∣

∣

SC(t)− SC(0)−
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1F(ζ, SC(ζ))dζ

∣

∣

∣

∣

+
1

Γ(ψ)

∫ t

0
(t − ζ)ψ−1

∣

∣F(ζ, S(ζ))− F(ζ, S̄C(ζ))
∣

∣ dζ

≤
ϵΥ(t)Γ(1 − ψ) sin(πψ)

π
+

LFΓ(1 − ψ) sin(πψ)

π

∫ t

0
(t − ζ)ψ−1

∣

∣SC(ζ)− S̄C(ζ)
∣

∣ dζ

≤
ϵΥ(t)Γ(1 − ψ) sin(πψ)

π
Eψ

(

LFSψ
)

.

By setting Σψ = ϵΓ(1−ψ) sin(πψ)
π Eψ

(

LFSψ
)

we have

∣

∣SC(t)− S̄C(t)
∣

∣ ≤ ΣψΥ(t), t ∈ [0, b].

Using the method of solution, we have the following

∣

∣VC(t)− V̄C(t)
∣

∣ ≤ ΣψΥ(t),
∣

∣AC(t)− ĀC(t)
∣

∣ ≤ ΣψΥ(t),
∣

∣JU(t)− J̄U(t)
∣

∣ ≤ ΣψΥ(t),

∣

∣JV(t)− J̄V(t)
∣

∣ ≤ ΣψΥ(t),
∣

∣R(t)− R̄(t)
∣

∣ ≤ ΣψΥ(t),
∣

∣CEV(t)− C̄EV(t)
∣

∣ ≤ ΣψΥ(t),

for every t ∈ [0, b]. Therefore, it is concluded that the fractional model is generalized Ulam-Hyers-

Rassias stable with regards to Υ(t). ■

4 Numerical scheme and simulations

On account of the many benefits of the fractional predictor-corrector technique, it is applied in

this section to numerically solve the proposed model. The numerical scheme is derived from

the Adams-Bashforth linear multi-step method in the Caputo sense [34] The numerical method’s

convergence was also a topic of discussion. The entire model (4)-(5) is simulated using the values of

the parameters listed in our table 2 in accordance with the demographic and epidemiological data

pertinent to the dynamics of COVID-19 incorporating environmental transmission in Nigeria. The

total population of Nigeria is roughly 206,139,587, and the average lifespan in Nigeria is 54.69 years

[31]. we have that µ = 1
54.69 ≈ 0.0183 year−1 and Ω = µ × 200, 000, 000 ≈ 365, 6976 year−1.

The initial conditions are put as listed as: SC(0) = 200, 000, 000, VC(0) = 5000000, AC(0) =

5000, JU(0) = 2000, JV(0) = 2000, R(0) = 2000, CEV(0) = 2500.

Let tk = kh, k = 0, 1, 2, . . . , m be the uniform grid points with some integer m and h = T/m, which

is the grid step size. As a result, (4) reduces to the fractional version of the one-step Adam-Moulton

method (Corrector formula) which is obtained by employing piece-wise interpolation with nodes

and knots located at tj, j = 0, 1, 2, . . . , k + 1,
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SC(tr+1)− SC(0) =
gψ

Γ(ψ + 2)

(

r∑

i=0

ui,r+1F (ti, SC(ti)) + F (tr+1, Sq
C
(tr+1))

)

,

VC(tr+1)− VC(0) =
gψ

Γ(ψ + 2)

(

r∑

i=0

ui,r+1G (ti, VC(ti)) + G (tr+1, Vq
C
(tr+1))

)

,

AC(tr+1)− AC(0) =
gψ

Γ(ψ + 2)

(

r∑

i=0

ui,r+1H (ti, AC(ti)) + H (tr+1, Aq
C
(tr+1))

)

,

JU(tr+1)− JU(0) =
gψ

Γ(ψ + 2)

(

r∑

i=0

ui,r+1K (ti, JU(ti)) + K (tr+1, Jq
U
(tr+1))

)

, (28)

JV(tr+1)− JV(0) =
gψ

Γ(ψ + 2)

(

r∑

i=0

ui,r+1Q (ti, JV(ti)) + Q (tr+1, Jq
U
(tr+1))

)

,

R(tr+1)− R(0) =
gψ

Γ(ψ + 2)

(

r∑

i=0

ui,r+1U (ti, R(ti)) + U (tr+1, Rq(tr+1))

)

,

CEV(tr+1)− CEV(0) =
gψ

Γ(ψ + 2)

(

r∑

i=0

ui,r+1V (ti, CEV(ti)) + W (tr+1, Cq
EV
(tr+1))

)

,

where the weight ui,r+1 =






rψ+1
− (r − ψ)(r + 1)ψ, i = 0.

(r − i + 2)ψ+1 + (r − i)ψ+1
− 2 (r − i + 1)ψ+1 , 1 ≤ i ≤ r.

1, i = r + 1.

The predictor formula motivated by the well-known one-step Adam-Bashforth method is given by

Sq
C
(tr+1)− SC(0) =

1

Γ (ψ)

r∑

i=0

vi,r+1F (ti, SC(ti)) ,

Vq
C
(tr+1)− VC(0) =

1

Γ (ψ)

r∑

i=0

vi,r+1G (ti, VC(ti)) ,

Aq
C
(tr+1)− AC(0) =

1

Γ (ψ)

r∑

i=0

vi,r+1H (ti, AC(ti)) , (29)

Jq
U
(tr+1)− JU(0) =

1

Γ (ψ)

r∑

i=0

vi,r+1K (ti, JU(ti)) ,

Jq
V
(tr+1)− JV(0) =

1

Γ (ψ)

r∑

i=0

vi,r+1Q (ti, JV(ti)) ,

Rq (tr+1)− R(0) =
1

Γ (ψ)

r∑

i=0

vi,r+1U (ti, R(ti)) ,

Cq
EV
(tr+1)− CEV(0) =

1

Γ (ψ)

r∑

i=0

vi,r+1W (ti, CEV(ti)) ,
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where the weight is given by

vi,r+1 = ψ−1gψ
(

(r − i + 1)ψ
− (r − i)ψ

)

.

Model fitting

The genetic algorithm method was used to fit the model in accordance with [35], which specifies

the values for the parameters under investigation. The above investigation was carried out using

the fmincon function in the optimization toolbox of MATLAB. Figure 1 presents the fitting of the

model 4. It was applied to the weekly total number of COVID-19 cases that had been confirmed in

Nigeria between April 1, 2021, and June 10, 2021. The figure demonstrates that the model behaves

very similarly to Nigeria’s COVID-19 data. The table provides a rough estimate of additional

fitting-derived parameters.1.
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Figure 1. Fitting the model to the cumulative number of confirmed COVID-19 cases in Nigeria. All other

parameters are as in Table 1

Impact of different values of fractional order on the model classes

Figure 1 presents simulations of the susceptible class at various fractional orders. During the

first 35 days of the simulation, it is observed that the total population grows as the fractional

order decreases and that the trend reverses as the fractional order increases. The simulations of

the vaccinated class at various fractional orders are shown in Figure 2. A comparative pattern is

noticed; The total population rises while the fractional order decreases during the first quarter of

the simulation period (35 days). As the fractional grows, the total population then shifts in the

opposite direction. The simulations for the Asymptomatic class are shown in Figure 3; For the

first quarter of the simulation period, it is observed that the total population does not increase or

decrease when the fractional order decreases. By the by, accordingly, it increments and diminishes

eventually as the fractional order diminishes. The simulations for the unvaccinated asymptomatic

class are shown in Figure 4; it shows that for the initial 30 days of the simulations time frame,

a decline in the fractional order value leaves the population unaltered as there was neither an

increment nor a diminishing in the complete population. As the fractional order decreased, there

was an increase in the total population.
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Figure 2. Simulations of the Susceptible individuals at different fractional order values. All other parameters as

in Table 1

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10
x 10

6

time (days)

In
d

iv
id

u
a

ls
 I

n
 T

h
e

 V
a

c
c

in
a

te
d

 l
a

s
s

 

 

ψ=0.95

ψ=0.85

ψ=0.75

ψ=0.65

Figure 3. Simulations of the Vaccinated individuals at different fractional order values. Using additional

parameters from Table 1
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Figure 4. Simulations of the Asymptomatic individuals at different fractional order values. Using additional

parameters from Table 1
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Figure 5 presents the simulations of the vaccinated asymptomatic class; During the first forty

days of the simulation, it is observed that the fractional order decreases while the total population

increases slightly; After that, the fractional order decreases, resulting in a significant increase

in the total population. The simulations for the Recovered class are shown in Figure 6; for the

first 40 days of the simulations, it is observed that the total population does not change as the

fractional order decreases; rather, it does not increase or decrease. Nonetheless, following a decline

in the fractional order, there was an expansion in the complete population. The simulations of

the environment’s COVID-19 concentration are shown in Figure 7; the simulations demonstrate

that as the fractional order decreased, neither an increase nor a decrease in the total population

occurred; as a result, the total population increased as the fractional order decreased.
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Figure 5. Simulations of the unvaccinated susceptible individuals at different fractional order values. Using

additional parameters from Table 1
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Figure 6. Simulations of the vaccinated susceptible individuals at different fractional order values. Using

additional parameters from Table 1
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Figure 7. Simulations of the Recovered individuals at different fractional order values. Using additional

parameters from Table 1
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Figure 8. Simulations of the concentration of COVID-19 in the environment at different fractional order values.

Using additional parameters from Table 1
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Figure 9. Simulation of the susceptible individual in the presence and absence of environmental transmission of

COVID-19. Here, ψ = 0.65. Using additional parameters from Table 1



104 | Bulletin of Biomathematics, 2023, Vol. 1, No. 1, 78–110

0 10 20 30 40 50 60 70 80 90 100
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9
x 10

6

time (days)

In
d

iv
id

u
a

ls
 I

n
 T

h
e

 V
a

c
c

in
a

te
d

 l
a

s
s

 

 

ϑ=0.000000005,ψ=0.65

ϑ=0,ψ=0.65

Figure 10. Simulation of the vaccinated individual in the presence and absence of environmental transmission of

COVID-19. Here, ψ = 0.65. Using additional parameters from Table 1
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Figure 11. Simulation of the asymptomatic susceptible individual in the presence and absence of environmental

transmission of COVID-19. Here, ψ = 0.65. Using additional parameters from table 1
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Figure 12. Simulation of the unvaccinated susceptible individual in the presence and absence of environmental

transmission of COVID-19. Here, ψ = 0.65. Using additional parameters from Table 1
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Figure 13. Simulation of the vaccinated susceptible individual in the presence and absence of environmental

transmission of COVID-19. Here, ψ = 0.65. Using additional parameters from Table 1
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Figure 14. Simulation of vaccinated Recovered individual in the presence and absence of environmental

transmission of COVID-19. Here, ψ = 0.65. Using additional parameters from Table 1
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Figure 15. Simulation of concentration of COVID-19 in the environment in the presence and absence of

environmental transmission of COVID-19. Here, ψ = 0.65. Using additional parameters from Table 1
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Impact of environmental transmission on the model classes

Figure 8 presents the simulations of the susceptible individuals in the presence and absence of

environmental transmission of Coronavirus. It has been carefully observed that when there is no

environmental transmission, the population grows because there are no infected people and that

is because the population is made up of people who are susceptible. However, the number of

asymptomatic individuals exposed to COVID-19 rises as environmental transmission decreases

the population.

In Figure 9, the simulations of the vaccinated individuals in the presence and absence of environ-

mental transmission are introduced. When there is no environmental transmission, the population

as a whole grows because there is no infection. On the other hand, when there is environmental

transmission, the population as a whole shrinks dramatically, leading to an increase in the number

of people who are asymptomatic after coming into effective contact with the infected environment.

The simulations of the asymptomatic individuals in the presence and absence of environmental

transmission are shown in Figure 10.

The shortfall of environmental transmission shows no impact on the absolute population for

the initial 40 days of the simulations time frame yet somewhat increments after the primary

period, this is on the grounds that the class is as of now an infected class that shows no side

effects. The infection grows rather than decreases as a result of environmental transmission; For

the first quarter of the simulation, the presence of environmental transmission has no effect on

asymptomatic individuals; however, after the first simulation period, the number of symptomatic

individuals rises.

In Figure 11, the simulations of the unvaccinated asymptomatic individuals in the presence and

absence of environmental transmission are introduced; at the point when there is no environmen-

tal transmission, for the principal quarter of the simulations time frame, the people in the class

neither increments nor diminishes however marginally expanded after the primary period, this is

on the grounds that it is now an infected class, so the shortfall of environmental transmission does

not influence the class, yet when there is an environmental transmission, the class stay unaltered

for the main quarter of the reproductions time frame yet increments after the primary time of the

simulations.

The simulations of the vaccinated asymptomatic individuals in the presence and absence of en-

vironmental transmission are shown in Figure 12; at the point when there is no environmental

transmission, it somewhat builds the quantity of the asymptomatic individual, yet when there is an

environmental transmission, we have a larger number of asymptomatic people. The simulations

of the Recovered individuals with and without environmental transmission are shown in Figure

13.

The absence of environmental transmission is observed to have no effect on the class. However,

after 20 days of simulation, there are more asymptomatic individuals in the presence of environ-

mental transmission. In Figure 14, the simulations of the concentration of Coronavirus in the

environment are introduced. It is observed that when there is no environmental transmission, the

class stay unaltered for the initial 20 days of the simulations time frame. At the point when there

is environmental transmission, the quantity of the asymptomatic people fundamentally expanded

following 20 days.

5 Conclusion

The fractional derivative was used to consider and analyze a fractional-order vaccination model

for COVID-19 incorporating environmental transmission. The Mittag-Leffler function is used

to demonstrate the solutions’ positivity and boundedness. The existence and uniqueness of the
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model solutions are additionally shown utilizing Banach and Schauder’s fixed point theorem. In

addition, we demonstrate the Ulam-Hyers-Rassias stability of the fractional-order model. For

the locally asymptotically stable system, it was demonstrated that the reproduction number was

lower than unity. Numerical simulations were likewise viewed as utilizing information pertinent

to Coronavirus cases for Nigeria and fitted to the week-by-week combined number of affirmed

cases from April 1, 2021, to June 10, 2021, to look at the effect of various fractional order values on

the model classes and the effect of environmental transmission on the model classes.

The highlights of the simulations are as follows:

(i) As depicted in Figure 2, the fractional-order value decreases with increasing model class

population.

(ii) There is a larger overall population when there is no environmental transmission. The number

of people who are asymptomatic rises when there is environmental transmission, as shown in

Figure 9.
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