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Universidad Politécnica de Cartagena
Spain
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Abstract

Cholera is an acute diarrheal disease caused by Vibrio cholera, its prevalence occurs in almost all
the continents of the world, annually there are about 1.3 to 4.0 million cases of cholera and 21, 000
to 143, 000 deaths worldwide. In this paper, we propose a deterministic model for the transmission
dynamics of cholera to assess the impact of vaccines in decreasing the spread of cholera infection in
Nigeria. Moreover, we develop an optimal control strategy, in which we consider personal hygiene
a control strategy on infection class, with u(t) as the control function. The best values of the fitting
parameters have been obtained using least square minimization to validate the model with the help
of experimental data obtained from Nigeria. We perform sensitivity analysis to determine the key
parameters that have impacts on the control of the spread of cholera infections in the population. In
addition, the numerical simulation of the model reveals that the use of vaccines and personal hygiene
will effectively control the spread of cholera infection.

Keywords: Basic reproduction number; treatment; model fitting; sensitivity analysis

AMS 2020 Classification: 34C23; 62P10; 92B05; 92D25

1 Introduction

Cholera is a short-term (acute) life-threatening disease caused by a bacterium called Vibrio cholera.
The disease attracts the intestine and brings about diarrhea. Cholera exists in different serogroups,
but only 01 and 0139 cause outbreaks [1]. Diarrhea is the main symptom of cholera and it is
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sometimes called acute diarrheal disease. The diarrhea is accompanied by severe dehydration
and can lead to death within hours. The disease is asymptomatic between 12 hours to 5 days
after its invasion into humans through ingesting contaminated food or water. However, infected
individuals can still shed the bacterium (which can contaminate the environment) and can infect
others [2]. People with low immunity “such as malnourished children or people living with HIV
have a higher tendency to develop the infection [3].
Cholera is transmitted through ingestion of food or water contaminated with the Vibro cholera
bacterium (which implies that unhygienic environments are more susceptible to cholera). The
disease can also be transmitted directly through human-to-human contact such as shaking hands
[4]. To avoid its transmission, proper sanitation of the environment is required to ensure clean
water and food. In addition to ensuring proper hygiene, vaccination is used for the prevention of
its prevalence [2]. The disease treatment is by quick replacement of the fluids and salt lost through
diarrhea (Oral rehydration solution (ORS) is used) [2]. Recovered cholera patients acquired immu-
nity that prevent them from being infected for many years [5].
Cholera prevalence occurs in almost all the continents of the world. It has been estimated that there
are 1.3 to 4.0 million cases of cholera, and 21, 000 to 143, 000 deaths worldwide due to cholera
annually [2]. Its pandemic started in 1961 in Indonesia, and it then spread into Europe, the South
Pacific, and Japan at the end of 1970s. The prevalence reached South America in 1990s. Previously,
there are many cholera outbreaks in India (2007), Congo, Zimbabwe and Iraq (2008), Zimbabwe
and Vietnam (2009), Nigeria and Haiti (2010). In the year 2010 alone, it is estimated that 3–5
million people were infected with cholera which causes the death of 100, 000–130, 000 people
worldwide [6]. In Nigeria, cholera is a recursive disease that occurs annually (during a rainy
season). Its first epidemic occurred in 1970 and 1990 with high epidemics in 1992, 1995, 1996 and
1997. There were 37,289 cholera cases and the disease caused 1, 434 deaths between January and
October 2010 as reported by the Federal Ministry of Health. Furthermore, in 2011, 22, 797 cases
of cholera with 728 deaths were reported. Nigeria Centre for Disease Control (NCDC) reported
42,466 suspected cases with 830 deaths in 2018 [1]. The NCDC also reported in November 21, 2021
that Nigeria recorded 103, 589 cholera infections and 3, 566 deaths which is greater than the death
caused by covid − 19 (2977) in the same year [7].
Many mathematical models have been developed to study the transmission dynamic of cholera
infection and come up with different measures, some of these are: the study by [8] shows that
effective control of the epidemic can easily be achieved through vaccination, public health educa-
tion, and treatment. Hove-Musekwa et al., (2011) recommended that nutritional issues should be
addressed in poor communities affected by cholera to reduce the burden of the disease. In order to
avoid the cholera outbreak in China, Sun et al. (2017) stated that it might be better to increase the
immunization coverage rate and make an effort to improve environmental management, especially
for drinking water. Motivated by the aforementioned works, we developed a mathematical model
of cholera infection with vaccination as a control measure.

2 Model description

We developed a mathematical model to study the spread of cholera in a human population at
time t > 0, denoted by N(t), and subdivided into four compartments: Susceptible individuals
S(t) (those who are healthy but can acquire the infection) with the infection rate λ; Vaccinated
individuals V(t) (those who take the vaccine) but some can acquire the infection at a slower rate
σλ; Infected individuals I(t) (those who are infected with the disease) but can obtain immunity
with recovery rate ϕ and Recovered individuals R(t) (those who recovered from the disease).
The susceptible individuals are vaccinated at a constant rate ω, while the vaccine wears off at a
rate ψ. The population of the bacteria is denoted by M(t) (the concentration of Vibrio Cholerae
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(V.C) in contaminating the environment). We use ξ and θ to denote the rate of disinfection
and the decay rate of V.C, respectively. We split the transmission rate into two parts. One is
environment-to-human transmission rate β1; and the other is human-to-human transmission rate
β2. The parameter k represents the concentration of the V.C in contaminating the environment
which yields 50% chance of acquiring the cholera disease (half-saturation constant of the bacteria
population). The force of infection denoted by λ (the rate at which the susceptible individuals
acquire the infectious disease) is given by:

λ =
β1 M

k + M
+ β2 I.

Figure 1. Schematic diagram of the model (1). Solid arrows indicate transitions and expressions next to arrows
show the per ca-pita flow rate between compartments

According to the diagram above, the dynamics of cholera can be described by the following system
of five differential equations.

dS
dt

= Π − λS − (µ + ω)S + ψV,

dV
dt

= ωS − (µ + ψ)V − σλV,

dI
dt

= λS − (µ + δ + ϕ)I + σλV,

dR
dt

= ϕI − µR,

dM
dt

= αI − (ξ + θ)M.

(1)
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Table 1. Interpretation of the state variables and parameters used in the model (1)

Variable Description
N Total human population
S Susceptible individuals
I Infected individuals

V Vaccinated individuals
R Recovered individuals

M Concentration of V.C in contaminating the environment
Parameter

Π Recruitment rate
µ Natural death rate
λ Force of infection

β1 Environment to human transmission rate
β2 Human to human transmission rate

k Concentration of V.C in the environment
σ Parameter for decrease of infectiousness in V
δ V.C induced death rate
ϕ Recovery rate
α Rate of human contribution to V.C

θ, ξ Rate of disinfection in the environment and decay rate of V.C respectively
ω Vaccination rate
ψ Vaccine withdrawing period

3 Basic properties of the model

Boundedness and positivity of solutions

The model consists of the human population and bacteria population (V.C). As such the variables
and parameters of the model are non-negative.

Theorem 1 The solution of the model (1) within the invariant region are feasible for all t > 0,

Ω =

{
(S(t), I(t), V(t), R(t), M(t)) ∈ R5

+ : N ≤ π

µ
, M ≤ α

(ξ + θ)2

}
.

Proof It suffices to show that the solution of the model (1) initiated in Ω does not leave the
region i.e R5

+ is positively invariant under the flow of system (1). [9, Theorem 2.1.5]. From the
boundedness of Ω it follows that S(0) > 0, I(0) > 0, V(0) > 0, R(0) > 0, and M(0) > 0. Suppose
S(0) and V(0) are not positive, then there exists a time t̃ > 0, such that S(t) > 0 and V(t) > 0 for
t ∈ [0, t̃), and S(t̃) = V(t̃) = 0. Now, consider the second, and the last part of model (1), we have

dI(t)
dt

≥ −(µ + δ + Φ)I(t), for t ∈ [0, t̃),

dM(t)
dt

≥ −(ξ + θ)M(t), for t ∈ [0, t̃),

so that I(0) > 0, and M(0) > 0 for t ∈ [0, t̃). Now, from the first and the second part of the model
(1), we have

dS(t)
dt

≥ −(µ + λ + ω)S(t), for t ∈ [0, t̃),

dV(t)
dt

≥ −(µ + ψ)V(t), for t ∈ [0, t̃).
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Now, S(0) > 0, and V(0) > 0 which contradict our hypothesis S(t̃) = V(t̃) = 0. Therefore S(t),
and V(t) are positive. To determine the positivity of the remaining variables we can write the
remaining part of the model (1) excluding first and the second equation in matrix form as follows:

dY(t)
dt

= QY(t) + B(t), (2)

with

Y(t) =
(

I R M
)T ,

Q =

 −(µ + δ + Φ) 0 0
Φ µ 0
α 0 −(ξ + θ)

 ,

B(t) =
(

0 0 0
)T .

(3)

The above matrix Q is called a Metzler matrix for the fact that S(t) is non-negative. Thus,
subsystem (2) is a monotone system [10]. Hence we can conclude that R4

+ is invariant under the
flow of subsystem (2). Therefore, R5

+ is positively invariant under the flow of system (1).

Disease-free equilibrium

In the absence of the disease, the model system (1) has a disease-free equilibrium which is obtained
by setting the right-hand side of the model equations to zero. Thus we have,

ϵ0 = (S0, V0, I0, R0, M0) =

(
(µ + ψ)π

µ (µ + ω + ψ)
,

ω π

µ (µ + ω + ψ)
, 0, 0, 0

)
.

Now, the total population at disease-free equilibrium N(t) is,

N0 ≤ π

µ
.

Basic reproduction number

The next generation operator method described by [11], was used to determine the basic repro-
duction number denoted by R0 = ρ(FV−1). The matrices F for the new infection terms and V for
the remaining transition terms are given by:

F =

 Π β2(µ+ψ)
(µ+ω)(µ+ψ)−ψ ω

+ Π β2ω
(µ+ω)(µ+ψ)−ψ ω

Π β1(µ+ψ)
k((µ+ω)(µ+ψ)−ψ ω)

+ Π β1σ ω
k((µ+ω)(µ+ψ)−ψ ω)

0 0

 , (4)

V =

[
µ + δ + ψ 0

−α ξ + θ

]
, (5)
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V−1 =

 1
µ+δ+ϕ 0

α
(µ+δ+ϕ)(ξ+θ)

1
ξ+θ

 , (6)

FV−1 =

 Π ((β2(ξ+θ)k+α β1)µ+β2ψ (ξ+θ)k+β1α (ω σ+ψ))
kµ (µ+ψ+ω)(µ+δ+ϕ)(ξ+θ)

Π β1(ω σ+µ+ψ)
kµ (µ+ψ+ω)(ξ+θ)

0 0

 . (7)

We determine the basic reproduction number as follows:

R0 =
Π ((β2 (ξ + θ) k + α β1) µ + β2ψ (ξ + θ) k + α β1 (ω σ + ψ))

kµ (µ + ψ + ω) (µ + δ + ϕ) (ξ + θ)
.

Using the proof from Theorem 2 of [11], if the reproduction number is less than one, the disease-
free equilibrium point is locally stable and the population can not be invaded by the disease.
Hence, the proof of the following theorem holds.

Theorem 2 The disease-free equilibrium (DFE) T0, of the model (1), is locally-asymptotically stable (LAS)
in Ω if R0 < 1, and unstable if R0 > 1.

Interpretation of the basic reproduction number

The threshold parameter (R0) is interpreted as the number of secondary cases produced by a
single cholera-infected individual in a completely susceptible population.

Global stability of disease-free equilibrium

Theorem 3 The disease-free equilibrium (DFE) ϵ0, of the model (1), is globally-asymptotically stable (GAS)
in Ω if R0 < 1, and unstable if R0 > 1.

Proof To show the GAS of DFE, the two condition [F1], and [F2] for R0 < 1, need to be satisfied
[12]. The system of (1) is re-write as.

dY1

dt
= F1(Y1, Y2),

dY2

dt
= F2(Y1, Y2) : F2(Y1, 0) = 0,

(8)

where Y1 = (S0, V0, R0), and Y2 = (I0, M0), with the elements of Y1 ∈ R3
+, representing the

uninfected population and the elements of Y2 ∈ R2
+, representing the infected population.

The DFE is now denoted as, ϵ0 = (Y∗
1 , 0), where Y∗

1 = (N0, 0).
Now for the first condition, that is GAS of Y∗

1 , gives

dY1

dt
= F1(Y1, 0) =

 π − (µ + ω)S0 + ψV
ωS − (µ + ψ)V0

−µR

 . (9)
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Solving the linear differential equations gives,

S0(t) =
π + ψV
(µ + ω)

−
π + ψV
(µ + ω)

e−(µ+ω)t + S0(0)e−(µ+ω)t,

V0(t) =
ωS

µ + ψ
−

ωS
µ + ψ

e−(µ+ψ)t + V0(0)e−(µ+ψ)t,

R0(t) = R(0)e−(µ)t.

Now, it is easy to show that S0(t) + V0(t) + R0(t) → N0(t), as t → ∞, regardless of the value of
S0(t), V0(t) and, R0(t). Thus, Y∗

1 = (N0, 0) is globally asymptotically stable.
Furthermore, for the second condition, that is F̃2(Y1, Y2) = BY2 − F2(Y1, Y2), gives:

B =

(
β2S − (µ + δ + ϕ) + σβ2V β1Sk

(k+M)2 +
σβ1Vk
(k+M)2

α −(ξ + θ)

)
. (10)

This is a Metziller matrix

F2(Y1, Y2) =

(
λS − (µ + δ + ϕ)I + σλV

αI − (ξ + θ)M

)
. (11)

Then,

F̃2(Y1, Y2) = BY2 − F2(Y1, Y2) =

[
0
0

]
.

Thus, we have

F̃2(Y1, Y2) =
[

0 0
]T .

It is clear that F̃2(Y1, Y2) = 0. Hence, the two conditions are satisfied, guaranteeing the global
stability of the disease-free equilibrium.

Endemic equilibrium point

The conditions I ̸= 0 and M ̸= 0 imply that the cholera invades the population. As such, setting
the vector field of (1) to zero, we obtain the equilibrium point at the endemic state as:

ϵ∗ = (S∗, V∗, I∗, R∗, S∗),

S∗ =
π (σ λ + µ + ψ)

σ λ2 + σ λ µ + σ λ ω + µ λ + λ ψ + µ2 + µ ω + µ ψ
,

V∗ =
π ω

σ λ2 + σ λ µ + σ λ ω + µ λ + λ ψ + µ2 + µ ω + µ ψ
,

I∗ =
λ π (σ λ + σ ω + µ + ψ)

(µ + δ + ϕ) (σ λ2 + σ λ µ + σ λ ω + µ λ + λ ψ + µ2 + µ ω + µ ψ)
,

R∗ =
ϕ λ π (σ λ + σ ω + µ + ψ)

µ (µ + δ + ϕ) (σ λ2 + σ λ µ + σ λ ω + µ λ + λ ψ + µ2 + µ ω + µ ψ)
,

(12)
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M∗ =
α λ π (σ λ + σ ω + µ + ψ)

(ξ + θ) (µ + δ + ϕ) (σ λ2 + σ λ µ + σ λ ω + µ λ + λ ψ + µ2 + µ ω + µ ψ)
.

Existence of the endemic equilibrium

To determine the existence of the endemic equilibrium, Descartes’s rule of sign is used. Now the
force of infection at the endemic state is given by,

λ∗ =
β1 M∗

k + M∗ + β2 I∗.

Substituting the endemic equilibrium points into the above force of infection gives λ∗ = 0, and
the polynomial of order four is obtained in the form of λ∗

Aλ∗4
+ Bλ∗3

+ Cλ∗2
+ Dλ∗ + E = 0,

where

A = k(ξ + θ)(µ + δ + ϕ)2σ2 + Πα(µ + δ + ϕ)σ2,

B = 2k(ξ + θ)(µ + δ + ψ)2(σµ + µ2 + µω + µϕ)σ + Πασ(µ + δ + ϕ)(σµ + 2σω + 2µ + 2ψ)

− Παβ1σ2(µ + δ + ϕ)− Πβ2αk(ξ + θ)(µ + δ + ϕ)σ2 − Π2β2ασ2,

C = k(ξ + θ)(µ + δ + ϕ)[2σ(µ2 + µω + µψ) + (σµ + σω + µ + ψ)2] + Πα(µ + δ + ϕ)[σ(µ2 + µω + µψ)

+ (σω + µ + ψ)(σµ + σω + µ + ψ)]− Παβ1(µ + δ + ϕ)(σµ + 2σω + 2µ + 2ψ)σ

− Πβ2k(ξ + θ)(µ + δ + ϕ)(σµ + 2σω + 2µ + 2ψ)σ − 2Π2αβ2(σω + µ + ψ)σ,

D = 2k(ξ + θ)(µ + δ + ϕ)2(σµ + σω + µ + ψ)(µ2 + µω + µψ) + Παβ1(µ + δ + ϕ)[(µ2 + µω + µψ)σ

+ (σω + µ + ψ)(σµ + σω + µ + ψ)]− Πβ2k(ξ + θ)(µ + δ + ϕ)[(µ2 + µω + µψ)σ

+ (σω + µ + ψ)(σµ + σω + µ + ψ)]− Π2αβ2(σω + µ + ϕ)2,

E = k(ξ + θ)(µ + δ + ϕ)2(µ2 + µω + µψ)2[1 − R0].
(13)

Global stability of endemic equilibrium

Theorem 4 If R0 > 1, the endemic equilibrium ϵ∗ is globally asymptotically stable.

Proof We construct a Lyapunov function

F =

(
S − S∗ − S∗ln

(
S
S∗

))
+

(
V − V∗ − V∗ln

(
V
V∗

))
+

(
I − I∗ − I∗ln

(
I
I∗

))
+

(
R − R∗ − R∗ln

(
R
R∗

))
+

(
M − M∗ − M∗ln

(
M
M∗

))
.

(14)

The derivative of along the solution of model Eq. (1) is:

F ′ = Π − λS − (µ + ω)S −
S∗

S
(Π − λS − (µ + ω)S) + ωS − σλV − µV −

V∗

V
(ωS − σλV − µV)

+ λS − (µ + ϕ)I + σλV −
I∗

I
(λS − (µ + ϕ)I + σλV) + ϕI − µR −

R∗

R
(ϕI − µR)

+ αI − (ξ + θ)M −
M∗

M
(αI − (ξ + θ)M).
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At steady state:

Π = λS∗ + (µ + ω)S∗,

(µ + ϕ)I∗ = λS∗ + σλV∗,

ωS∗ = (µ + ψ)V∗ + σλV∗,

ϕI∗ = µR∗,

αI∗ = (ξ + θ)M∗.

Using the above relation we have:

F ′ ⩽ (µ + ω)S∗
(

2 −
S
S∗ −

S∗

S

)
+ λS∗

(
3 −

S∗

S
−

I
I∗

−
I∗

I

)
+ µV∗

(
2 −

V
V∗ −

V∗

V

)
+ σλV∗

(
3 −

I
I∗

−
I∗

I
−

V∗

V

)
+ µR∗

(
2 −

R
R∗ −

R∗

R

)
+ M∗(ξ + θ)

(
2 −

M
M∗ −

M∗

M

)
.

Since the arithmetic mean is greater than the geometric mean we have:(
2 −

S
S∗ −

S∗

S

)
⩽ 0,

(
3 −

S∗

S
−

I
I∗

−
I∗

I

)
⩽ 0,

(
2 −

V
V∗ −

V∗

V

)
⩽ 0,(

3 −
I
I∗

−
I∗

I
−

V∗

V

)
⩽ 0,

(
2 −

R
R∗ −

R∗

R

)
⩽ 0,

(
2 −

M
M∗ −

M∗

M

)
⩽ 0,

thus, we have that F ′ ⩽ 0 for R0 > 1, since the relevant variables in the equations for S(t)∗, V(t)∗,
I(t)∗, R(t)∗, M(t)∗ are at endemic steady state, it follows that these can be substituted into the
equations for S(t), V(t), I(t), R(t) and M(t). Therefore, the result follows by applying the LaSalle’s
invariance principle [13]. Hence the endemic equilibrium (EE) ϵ∗ of model (1) is globally asymp-
totically stable (GAS).

4 Designing the optimal control problem

Optimal control involves the determination of a piece-wise control variable u(t), and the associated
state variables x(t), that minimize the number of infectious individuals and the cost of controlling
the infection. In this paper, we use personal hygiene as a control strategy on the basic model of
cholera transmission which symbolizes u(t). Moreover, the controlled system is as follows:

dS
dt

= Π − u(t)λS − (µ + ω)S + ψV,

dV
dt

= ωS − (µ + ψ)V − u(t)σλV,

dI
dt

= u(t)λS − (µ + δ + ϕ)I + u(t)σλV,

dR
dt

= ϕI − µR,

dM
dt

= αI − (ξ + θ),

(15)

with S(0) = S0, V(0) = V0, I(0) = I0, R(0) = R0, M(0) = M0.
The single-objective function called the cost functional J[x(t), u(t)] to be minimized for our
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problem is given by:

J[x(t), u(t) =
∫ t f

0

(
aI +

1
2

wu2
)

dt, (16)

where a > 0, w > 0, and the terms aI and 1
2 wu2 represent the cost of infection and the cost of

personal hygiene, respectively. The condition associated with the cost is nonlinear, and therefore
we perceive the cost expression to be quadratic ( 1

2 wiu2
i ). u(t) is a piece-wise continuous in the set

of admissible control U = {(u(t)) : 0 ≤ u(t) ≤ 1}. The aim is to determine the optimal control u∗

such that

J(u∗) = min
(u(t))∈U

J(u(t)).

Thus, we show that an optimal control u∗ for system (15) exists. Also, we are to highlight that the
system (15) is bounded for finite time [14]. We extend to find the upper bound solutions (super
solutions) of S, V, I, R and M in model (15). Now, we consider the first equation of (15).

Existence of an optimal control on the system

We can prove the existence of optimal control by using the method used by [15]. For more details,
see [[16], Theorem 6, pp. 6].
Let Smax, be the super solution associated with S. Given that S(t) ≥ 0, and V(t) ≥ 0 as proved
in Theorem 1, then

dSmax

dt
= Π + ψV.

Similarly, Let Vmax, Imax, Rmax, and Mmax be the super solution associated with V, I, R, and M
respectively in (15). Given that I(t) ≥ 0, R(t) ≥ 0, and I(t) ≥ 0 then,

dVmax

dt
= ωS,

dImax

dt
= λS + σλV,

dRmax

dt
= ϕI,

dMmax

dt
= αS.

We can formulate a set of super solutions for system (15), by using the bounds. Denoting these
super solutions by S, V, I, R, and M such as:

dS
dt
dV
dt
dI
dt
dR
dt

dM
dt

 =


0 ψ 0 0 0
ω 0 0 0 0

λmax σλmax 0 0 0
0 0 ψ 0 0
0 0 α 0 0




S
V
I
R
M

+


π

0
0
0
0

 =


0
0
0
0
0

 . (17)

It shows that this is a linear system in finite time with bounded coefficients, hence, the super-
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solutions S, V, I, R, and M are uniformly bounded. Likewise, our original system is ultimately
bounded. It shows that an optimal control exists.

Hamiltonian and optimality of the system

We used Pontryagin’s Maximum Principle, which provides the necessary and sufficient conditions
for optimality, to prove the optimality of the system. To obtain that, we need to write in detail, the
Hamiltonian. The Hamiltonian (H) is generally symbolized as:

H = L + λ1
dS
dt

+ λ2
dV
dt

+ λ3
dI
dt

+ λ4
dR
dt

+ λ5
dM
dt

, (18)

where L is the Lagrangian, obtained from the objective function. The Hamiltonian associated with
the system under study is given by:

H =aI +
1
2

wu2 + λ1 (Π − u(t)λS − (µ + ω)S + ψV) + λ2 (ωS − (µ + ψ)V − u(t)σλV)

+λ3 (u(t)λS − (µ + δ + ϕ)I + u(t)σλV) + λ4 (ϕI − µR) + λ5 (αI − (ξ + θ)) ,
(19)

where λ1, λ2, λ3, λ4, and λ5 are called the adjoint variables to be determined. We now state the
following theorem.

Theorem 5 Given the optimal control set u(t) together with the corresponding solution, S, V, I, R, and M
which minimize J(u(t)) over U, then there exist adjoint variables λ1, λ2, λ3, λ4, and λ5 such that

dλ1

dt
= λ1 (u(t)λ + µ + ω)− λ2ω − λ3u(t)λ,

dλ2

dt
= −λ1ψ + λ2(µ + ψ + u(t)σλ)− λ3u(t)σλ,

dλ3

dt
= −a + u(t)β2[λ1S + λ2σV − λ3(S + σV)] + (µ + σ + ϕ)λ3 − ϕλ4 − αλ5,

dλ4

dt
= µλ4,

dλ5

dt
= −

β1k
(k + M)2 [Sλ1 + u(t)σλ2V − (S + σV)u(t)λ3] + (ξ + θ)λ5,

(20)

with transversality conditions λi(t f ) = 0, i = 1, ..., 5. Moreover,

u∗ = min
(

max
(

λ[λ1S + λ2σV − λ3(S + σV)]

w
, 0
)

, 1
)

. (21)

Proof As stated above, we applied the Pontraygin’s Maximum Principle to determine the adjoint
variables and the representations of the control functions Since the control functions exist. For the
adjoint variables we proceed as follows:

dλ1

dt
= −

∂H
∂S

= −[λ1(−u(t)λ − (µ + ω)) + λ2ω + λ3u(t)λ] = λ1 (u(t)λ + µ + ω)− λ2ω − λ3u(t)λ,

dλ2

dt
= −

∂H
∂V

= −[−λψ − λ2(µ + ψ + u(t)σλ) + λ3u(t)σλ]

= −λ1ψ + λ2(µ + ψ + u(t)σλ)− λ3u(t)σλ,
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dλ3

dt
= −

∂H
∂I

= −a + u(t)β2[λ1S + λ2σV − λ3(S + σV)] + (µ + σ + ϕ)λ3 − ϕλ4 − αλ5,

dλ4

dt
= −

∂H
∂R

= −(−µλ4) = µλ4,

dλ5

dt
= −

∂H
∂M

= −

(
−

λ1β1Sk
(k + M)2 −

λ2β1σu(t)Vk
(k + M)2 +

λ3β1u(t)Sk
(k + M)2 +

λ3β1σu(t)Vk
(k + M)2 − (ξ + θ)λ5

)
= −

β1k
(k + M)2 [Sλ1 + u(t)σλ2V − (S + σV)u(t)λ3] + (ξ + θ)λ5.

(22)
The illustrations of the controls is given by:

∂H
∂u(t)

= 0,

at u(t) = u(t)∗. Thus, the standard optimality argument is:

u(t)∗ = min
(

max
(

λ[λ1S + λ2σV − λ3(S + σV)]

w
, 0
)

, 1
)

. (23)

Based on the results of the above Theorem 5, which imply that after obtaining the terms for the
control function u∗, as well as the adjoint equations with their transversality conditions. We
suggest the optimal control terms for minimizing the spread of cholera transmission.

5 Model fitting and parameter estimation

This section is devoted to fitting some unavailable biological parameters of the proposed five-
dimensional epidemic model for cholera disease. It also assists one to have built confidence in
the model proposed, for the validation comes along. Such vital analyses are possible only when
some authentic information for the real experimental data for the disease under investigation is
available. When the data set for the actual infected cases is arranged, there comes the question
of a method that could be chosen for validation of the model with the help of an experimental
data set. It may be noted that several methods exist in the present literature for the fitting of
a nonlinear system of ordinary differential equations to the experimental results, we resort to
least-squares minimization. Under this method, the best values of the fitting parameters can
be obtained, including respective standard errors, statistical estimators (like the t-statistic and
p-value), and confidence intervals.
The available parameters of the model (1) are shown in Table 2 wherein their units and the sources
where-from they are taken are also mentioned. The two most important parameters β1, and β2 are
fitted with their best estimates as shown in Table 3 that accompanies some statistical estimators
as well. The p-values are < 0.05 with 95% confidence intervals for both estimated parameters,
including reasonably small standard error with acceptable t-statistic.
Moreover, the descriptive statistical measures for both real and predicted cases are shown in Table 4
where minimum, three quartiles, mean, maximum and standard deviation can be observed. Each
value from the real cases is found to have good agreement with what is obtained via simulations
for the I compartment including the smaller standard deviation in the predicted cases. It may
also be noted the interquartile range (IQR) for both cases is identical to be 5.7750 × 102, thereby
containing middle 50% of the data. Figure 2 further confirms the better agreement of the predicted
cholera cases with the real cases of the disease having R-squared (coefficient of determination)
value to be about 0.9376, including some residuals which are uniformly distributed as shown in
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multiple types of residuals in Figure 3. Some outliers are observed in the cholera cases (real and
predicted) as shown by the box and whisker plot in Figure 4.

Table 2. Baseline values, units, and references for parameters of model (1)

Parameter Baseline Units Sources
N 20616716 Persons [17]
µ 1/(11.4 × 52) week−1 [18]
Π 36.855 × µ week−1 [17]
k 1 Cells.mL−1 [18]
σ 0.127 week−1 [17]
δ 0.47 week−1 [17]
ϕ 1.4 week−1 [18]
α 2000 Cells.mL−1.week−1 [18]
θ 0.07 week−1 [18]
ξ 0.2331 week−1 [18]
ω 0.149 week−1 [8]
ψ 0.021 week−1 [8]

Table 3. The best fit parameters of the model (1) with the respective statistical estimators

Estimate Standard Error t-Statistic P-Value Confidence Interval
β1 4.3208 × 10−5 1.2003 × 10−5 3.5998 2.0480 × 10−3 (1.7991 × 10−5, 6.8425 × 10−5)
β2 7.0320 × 10−8 6.6760 × 10−9 1.0533 × 101 3.9918 × 10−9 (5.6294 × 10−8, 8.4345 × 10−8)

Table 4. The descriptive statistical summary for both real experimental data and the simulations predicted from
model (1) for I compartment

Min Q1 Q2 Q3 Mean Max SD
Real 4.600 × 101 7.800 × 101 2.540 × 102 6.330 × 102 5.535 × 102 2.127 × 103 6.406 × 102

Predicted 1.554 × 102 1.821 × 102 2.661 × 102 6.145 × 102 5.783 × 102 2.127 × 103 6.077 × 102

Figure 2. The best curve fitting for the real cases of the infected individuals from the proposed cholera model (1)
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Figure 3. The residuals for the real cases of the infected individuals from the proposed cholera model (1)

Figure 4. The comparison between real and predicted symptomatically infected individuals via BoxWhisker plot

Figure 5. Contour plots of the basic reproduction number in terms of parameter values
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6 Sensitivity analysis

In this section, the proposed cholera model associated with the basic reproduction number R0 with
respect to the biological parameters of the model is analyzed using the forward sensitivity index.
This method is applied to determine the most sensitive parameters of the model, parameters with
positive signs are considered the most sensitive for increasing the value of R0 while those with
negative signs are sensitive to the decrease of R0 [15, 19]. We determine the sensitivity status
of each parameter and their impacts on the control of the spread of cholera infections in the
population to obtain the optimal result [20, 21]. The normalized local sensitivity index of R0 with
respect to ξ is denoted by χ

R0
ξ which is written as

χ
R0
ξ =

ξ

R0
× ∂R0

∂ξ
, (24)

Table 5 shows the indices for R0 with respect to parameters.

Table 5. Forward normalized sensitivity indices

Parameter Elasticity Indices Values of the Elasticity index
β1 χ

R0
β1

1.0000

k χ
R0
k -1.0000

ω χ
R0
ω -0.4132

α χ
R0
α 1.0000

ξ χ
R0
ξ -0.7691

ϕ χ
R0
ϕ -0.7480

θ χ
R0
θ -0.2310

δ χ
R0
δ -0.2511

ψ χ
R0
β2

0.3822

σ χ
R0
σ 0.4546

7 Numerical scenarios

This is the section in which the behavior of the model is examined. The transmission dynamics
of the governing model may be effectively explored using numerical simulations with the aid of
state variables of interest. The numerical simulations are used to understand the behavior of the
model under investigation. The parameters generated by the nonlinear minimum-squares fitting
technique are used in the immediate section to determine different types of time series graphs.
S[0] = 20614589, I[0] = 2127, V[0] = 0, R[0] = 0, M[0] = 0.

8 Discussion and conclusions

This research describes a deterministic model for the transmission dynamics of cholera infection
incorporating vaccine and personal hygiene as strategies for controlling its spread. Analysis of
the model shows that the disease-free equilibrium is locally and globally asymptotically stable
when R0 < 1, and unstable when R0 > 1. Lyapunov function method is used in verifying the
stability of the endemic equilibrium point which is found to be globally asymptotically stable
when R0 > 1, and unstable when R0 < 1. The numerical simulations have been carried out using
the data published by the Nigeria Centre for Disease Control [17]. A detailed explanation of the
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method followed for the model fitting was described in Section 4. The fitted parameters of the
model are summarized in Table 2. The most sensitive parameters for controlling the spread of
cholera infection are determined using the forward sensitivity index method, these parameters
with their elasticity index are summarized in Table 5. Patterns of the susceptible, vaccinated,
infected, recovered and concentration of V.C in contaminating the environment are described
in Figure 7a, Figure 7b, Figure 8a, Figure 8b and Figure 9, respectively. The effect of the rate of
human contribution to V.C on the concentration of V.C in contaminating the environment is shown
in Figure 10a. The figure shows that a decrease in contaminating the environment can reduce envi-
ronmental transmission. Figure 10b shows that as the chance of becoming infected by vaccinated
individuals decreases, the number of infected individuals also decreases, which implies that the
disease control is dependent on the efficacy of the vaccine. Figure 11a shows that an increase in
the rate of disinfection of the environment results to the decrease in the environmental cholera
transmission. This implies that proper sanitation can control the environmental transmission of
V.C. Nevertheless, the optimal control described in Section 4 shows that proper sanitation will



Mustapha et al. | 17

0 1 2 3 4 5

t

0

10

20

30

40

50

60

70

80

90

100

I

(a) Behavior of the state variable infected
individual I

0 1 2 3 4 5

t

0

10

20

30

40

50

60

70

80

R

(b) Behavior of the state variable recovered indi-
vidual R

0 1 2 3 4 5

t

0

1

2

3

4

5

6

7

8

M

10
4

Figure 9. Behavior of the state variable Concentration of V.C in Contaminating the Environment M

0 1 2 3 4 5

t

0

2

4

6

8

10

12

M

10
5

=2000

=1900

(a) pattern of M with different values of the
rate of human contribution to V.C

0 1 2 3 4 5

t

100

120

140

160

180

200

220

240

260

280

I

=0.127

=0.0127

(b) pattern of I with different values of the modifi-
cation parameter that decreases the infectiousness
of V

cost less and the same time effective in controlling the recurrence of the disease. So to eradicate
cholera disease in Nigeria, an efficient vaccine and proper sanitation should be enhanced.
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Abstract

The immense disease burden of tuberculosis (TB) infection is well-documented, particularly among
those co-infected with HIV and TB. To better understand the transmission dynamics of HIV-TB co-
infection in the absence of readily available HIV treatment, we develop a deterministic compartmental
co-infection model. Our model helps to identify the effects of TB infection on the co-infection dynamics
of the two diseases, especially when treatment for TB is readily available. We find that susceptibility to
TB reinfection after a previous infection leads to backward bifurcation in the TB-only model when the
associated reproduction number (R0) is less than unity. However, when we make the susceptibility to
TB re-infection insignificant in the model, the disease-free equilibrium of the TB-only model is locally
asymptotically stable when the associated R0 is less than unity. We conduct sensitivity and uncertainty
analyses to identify the key parameters driving TB infection dynamics, using the R0 as the response
function. We discover that the transmission rate for TB, the modification parameters accounting for
the infectiousness of infected individuals with TB-only, and the treatment rates for singly infected
individuals with latently infected TB are the top drivers of TB infection in the given population.
Our numerical simulations suggest that concentrating treatment on TB-infected individuals in the
diagnosed latently infected stage (singly or dually infected with HIV) could effectively reduce the
co-infection disease burden and HIV incidence in the population under study.
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1 Introduction

HIV, the Human Immunodeficiency Syndrome, is a virus that attacks cells aiding human resistance
to infections, thus increasing vulnerability to numerous other infections and diseases [1–3]. When
a person is infected with the virus, it targets and destroys CD4 cells of the immune system. As
the HIV infection progresses within the human system, the viral load increases, weakening the
immune system. Without antiretroviral treatment, the infection advances to Acquired Immune
Deficiency Syndrome (AIDS), the advanced stage of HIV infection, where the immune system
becomes severely compromised. The virus was initially identified among homosexuals in the
United States of America in 1983, though other reports claim its discovery among apes in 1982 in
Kenya [4]. Causes of HIV include vaginal intercourse with an HIV-positive individual without
using a condom or pre-exposure prophylaxis (PrEP), as well as sharing equipment for injectable
illicit drugs, hormones, and steroids with someone infected with HIV [5]. The virus can be
transmitted through blood, semen, pre-seminal fluid, vaginal fluids, rectal fluids, and breast milk
[4]. HIV can be prevented by avoiding risky behaviors, using condoms during sex, and receiving
regular vaccinations for potential opportunistic infections. An individual with an undetectable
level of HIV cannot transmit the virus to another individual [5].
Tuberculosis, also known as TB, is a bacterial infection caused by Mycobacterium tuberculosis
bacteria [6]. It primarily affects the lungs but can also affect other parts of the body. Transmission
occurs through the air when a person inhales droplet nuclei containing the bacteria. Active TB
manifests with symptoms such as coughing up mucus or blood, chest pain, fever, night sweats,
loss of appetite, fatigue, and persistent coughing for three or more weeks [3, 7]. The disease can
be prevented and treated with medication. TB/HIV co-infection presents special diagnostic and
therapeutic challenges and places a significant burden on healthcare systems in many countries
[8–10]. TB remains one of the leading causes of death worldwide in the era of HIV, with both
diseases collectively responsible for the deaths of 4 million people annually [8]. Studies indicate
that while not all HIV patients develop TB disease, those co-infected with both HIV and TB have
a higher risk of progressing from TB infection to TB disease due to weakened immune systems.
Unlike HIV, TB is entirely preventable, treatable, and curable. While treatment is a fraction of
the cost of medications used for HIV, TB co-infection accelerates HIV progression to AIDS [11].
Infected HIV patients are at a heightened risk of contracting tuberculosis [8]. Therefore, adequate
attention to the prevention and control of TB/HIV co-infections in a population is crucial.
Several studies have investigated the co-infection of HIV and TB, developing models to under-
stand their epidemics’ dynamics. These studies emphasize the importance of incorporating each
disease’s effects and formulating models for their transmission mechanisms. Wang et al. [12]
proposed a dynamic epidemiological model of HIV-TB co-infection incorporating latent age, em-
phasizing the significance of assessing each disease’s effects on co-infection dynamics. Kaur et al.
[13] formulated a simple compartmental deterministic model for HIV-TB co-infection, highlighting
the existence of an unstable co-infection equilibrium point under certain parameter restrictions.
Azeez et al. [1] developed a deterministic compartmental epidemiological model to study the
transmission mechanism of HIV-TB co-interaction, revealing that individuals with HIV infection
are at greater risk of TB co-infection compared to those without HIV infection. Fatmawati et al.
[14] formulated an optimal control co-infection model of HIV-TB, demonstrating that combining
anti-TB and antiretroviral treatment is optimal for reducing the burden of co-infection. Omale et al.
[15] developed a deterministic co-infection model incorporating control measures to study the sce-
nario where both HIV and tuberculosis infect the same individual, finding that the infectiousness
of one disease increases the risk of infectiousness of the other and that the implemented control
measures significantly reduce tuberculosis infection, ultimately reducing co-infection rates.
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In general, epidemiological models, such as those in [16–25], are valuable tools for studying the
transmission dynamics of infectious diseases. Therefore, this research study aims to develop and
analyze a mathematical model for HIV/TB co-infection in the presence of treatment. The study
has six specific objectives, including:

• Demonstrating the stability of the disease-free equilibrium.
• Analyzing the reproduction number to identify parameters that can reduce the spread of the

disease.
• Conducting sensitivity analysis to identify key parameters that drive infectiousness.
• Validating theoretical results with numerical simulations.
• Creating contour plots involving key parameters and the reproduction numbers for the diseases

with the aim of determining the threshold for control measures that can help eradicate the
diseases from the human population.

• Providing qualitative and empirically-based recommendations to policymakers in the health
sector to assist them in controlling the spread of the two diseases and obtaining necessary and
sufficient conditions for their eradication in the human population.

In general, from this study, it is anticipated that its findings will significantly contribute to the
body of knowledge that informs health policymakers, planners, project implementers, and future
researchers by providing strategies for the prevention and control of HIV/TB co-infections through
the dynamic analysis of our model.
The manuscript is organized into six sections, including a description of the model formulation,
theoretical analysis, sensitivity analysis, numerical simulations, discussion of the plots, and
conclusion.

2 Model formulation

The total human population N(t), at any time t is divided into 13 compartments, as listed in
Table 1, to obtain:

N(t) = S(t) + E(t) + EL(t) + EUL(t) + IUA(t) + T(t) + R(t) + IH(t) + ETH(t) + IHU(t)
+IHUA(t) + IHDA(t) + THT(t).

It is assumed that individuals who are dually infected can only transmit one of the diseases at a
time. The equations for the new co-infection model are formulated as follows.

Transmissions by singly infected individuals

Individuals acquire HIV infection IH(t), from effective contact with those infected with HIV only,
at a rate given by:

λ̇H = βH
IH(t)

N
, (1)

where βH represents the transmission rate for HIV.
Likewise, the acquisition of TB infection by individuals from those in IUA, and T, compartments,
at a rate λT, is given as:

λT = βT
(IUA + η1T)

N
. (2)

Here, the rate of TB transmission is βT, where the modification parameter η1 ≥ 1, accounts for the



24 | Bulletin of Biomathematics, 2024, Vol. 2, No. 1, 21–56

relative infectiousness of individuals with diagnosed actively infected TB compared to those with
undiagnosed actively infected TB infection. The assumption is that those individuals diagnosed
as actively infected with TB are more infectious than those undiagnosed [9].

Transmissions by dually infected individuals

TB is transmitted by dually infected individuals at a rate given by:

λTH =
βT(η2 IHUA + η3 IHDA)

N
. (3)

The transmission rate for TB is modified by the parameters η2, while η3, accounts for the increased
infectiousness of dually infected individuals with HIV and undiagnosed active TB infection
compared to those with dually infected HIV diagnosed TB only. It is assumed that η3 ≥ η2 > 1.
HIV transmission by those infected with both diseases occurs at the following rate:

λHT =
βH(EHT + ϕ1 IHU + ϕ2 IHUA + ϕ3 IHDA + ϕ4 IHT)

N
. (4)

Here, the relative infectiousness of HIV-infected individuals with primary, secondary, early latent,
and late latent TB, respectively, compared to HIV-only infected individuals is accounted for by
parameters ϕ1, ϕ2, ϕ3, and ϕ4.

Description of model equation formation

The rate of recruitment for susceptible individuals to the two diseases occurs at the rate π. Those
that acquire HIV and TB infection do so at the rates λH, and λT, respectively. Likewise, HIV and
TB are transmitted by dually infected individuals at rates given by λTH, and λHT (where λH, λT,
λTH, and λHT, are as initially defined in Section 2. The natural death rate for individuals in all
compartments occurs at the uniform rate µ. The contact rates for HIV and tuberculosis are given
by βH, and βT, respectively. Singly infected individuals with latently infected TB, undiagnosed
latently infected TB, undiagnosed actively infected, and diagnosed actively infected individuals
with TB on prompt treatment are treated at rates σ1, σ2, σ3, and σ4, respectively.
On the other hand, treatment rates for dually infected individuals with HIV and latently infected
TB, HIV and undiagnosed latently infected TB, HIV and undiagnosed actively infected TB, and
HIV and diagnosed actively infected individuals with TB are σT1, σT2, σT3, and σT4 respectively,
while the modification parameters that account for the infectiousness of dually infected individuals
are ϕ1, ϕ2, ϕ3, and ϕ4. Individuals who are singly infected progress from exposed class, diagnosed
latently infected class, undiagnosed latently infected class, undiagnosed actively infected class,
diagnosed actively infected with TB on prompt treatment class to classes EL, EUL, IUA, T, and R,
at the rates ψ1, ψ2, ψ3, and ψ4, respectively. Likewise, individuals that are infected with the two
diseases in the classes EHT, IHU , IHUA, IHDA, and THT, progress to classes IHU, IHUA, IHDA, and
THT, at the rates ψHU , ψHUA, ψHDA, and ψHT, respectively.
The modification parameters accounting for variability in the susceptibility of recovered indi-
viduals to TB infection are given by ε1, and ε2, while those accounting for the susceptibility of
recovered individuals to TB infection are represented by γ1, and γ2. Similarly, the modification
parameters accounting for the susceptibility of TB-infected individuals to HIV infection are given
as θ1, θ2, θ3, θ4, θ5, θ6, θ7, and θ8, respectively, while those accounting for the infectiousness of
infected individuals with TB only, HIV and undiagnosed actively infected TB, HIV and diagnosed
actively infected TB are η1, η2, and η3, respectively. It should be noted that the disease-induced
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death rate in each of the disease-infected compartments occurs at uniform rates δ1, δ2, δ3, δ4, δ5,
and δ6, respectively.

Table 1. Description of the model variables and parameters

Variable Description
Sh Group of individuals that are susceptible to the two infections
E Group of exposed individuals to TB
EL Group of diagnosed latently infected individuals to TB
EUL Group of undiagnosed latently infected individuals to TB
IUA Group of undiagnosed actively infected individuals to TB
T Group of diagnosed actively infected individuals to TB on prompt treatment
R Group of recovered individuals
IH Group of HIV infected individuals
EHT Group of dually infected individuals with diagnosed latent HIV and TB
IHU Group of dually infected individuals with HIV and undiagnosed latently infected

TB
IHUA Group of dually infected individuals with HIV and undiagnosed active TB
IHDA Group of dually infected individuals with HIV and diagnosed active TB
THT Group of dually infected individuals with HIV and TB on prompt treatment for

both diseases
Parameter Description
π Recruitment rate into the susceptible class
µ Rate at which individuals die naturally
βT (βH) Contact rates for tuberculosis (HIV)
σ1, σ2, σ3, σ4 Treatment rates for singly infected individuals with latently-infected TB, undiag-

nosed latently-infected TB, undiagnosed actively-infected and diagnosed actively-
infected individuals with TB on prompt treatment

σT1, σT2, σT3, σT4 Treatment rates for dually infected individuals with HIV and latently-infected TB,
HIV and undiagnosed latently-infected with TB, HIV and undiagnosed actively-
infected with TB, HIV and diagnosed actively-infected individuals with TB

ψ1, ψ2, ψ3, ψ4 Rate of progression for singly infected individuals from exposed, diagnosed latently-
infected, undiagnosed latently-infected, undiagnosed actively infected, diagnosed
actively infected with TB on prompt treatment to classes EL, EUL, IUA, T, and R,
respectively

ε1, ε2 Modification parameters accounting for variability in susceptibility of recovered
individuals to TB infection

ψHU , ψHUA, ψHDA,
ψHT

Rate of progression for dually infected individuals from classes EHT , IHU , IHUA,
IHDA, and THT , to classes IHU , IHUA, IHDA, and THT , respectively

γ1, γ2 Modification parameters accounting for the susceptibility of recovered individuals
to TB infection

θ1, θ2, θ3, θ4, θ5, θ6,
θ7, θ8

Modification parameters accounting for the susceptibility of TB-infected individuals
to HIV infection

η1, η2, η3 Modification parameters accounting for the infectiousness of infected individuals
with TB only, HIV, and undiagnosed actively infected TB, HIV, and diagnosed
actively-infected TB respectively

ϕ1, ϕ2, ϕ3, ϕ4 Modification parameters accounting for the infectiousness of dually infected indi-
viduals

δ1, δ2, δ3, δ4, δ5, δ6 Disease-induced death rates due to HIV with TB co-infection

Based on the description above, the model assumptions, and the schematic diagram below, we
formulate the following system of non-linear differential equations as that which captures the
transmission dynamics of HIV-TB co-infection in a given population:
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dS
dt

= π − λTS − λHS − λTHS − λHTS − µS,

dE
dt

= λTS + λTHS + ε1λTR + ε2λTHR − λHE − λHTE − (ψ1 + µ)E,

dEL
dt

= ψ1E − θ1λHEL − θ2λHTEL − (ψ2 + σ1 + µ)EL,

dEUL
dt

= ψ2EL − θ3λHEUL − θ4λHEUL − (ψ3 + σ2 + µ)EUL,

dIUA
dt

= ψ3EUL − θ5λH IUA − θ6λHT IUA − (ψ4 + σ3 + µ)IUA,

dT
dt

= ψ4 IUA − θ7λHT − θ8λHTT − (ψ5 + σ4 + µ)T,

dR
dt

= σ1EL + σ2EUL + σ3 IUA + σ4T − ε1λTR − λHR − ε2λTHR − λHTR − µR,

dIH
dt

= λHS + λHTS + λHR + λHTR − γ1λT IH − γ2λTH IH + σT1EHT + σT2 IHU

+ σT3 IHUA + σT4 IHDA + σT5THT − (µ + δ1)IH,
dEHT

dt
= σ1λT IH + σ2λTH IH + λHTE − (ψHU + σT1 + δ2 + µ)EHT,

dIHU
dt

= ψHUEHT + θ1λHEL + θ2λHTEL − (ψHUA + δ3 + σT2 + µ)IHU ,

dIHUA
dt

= ψHUA IHU + θ3λHEUL + θ4λHTEUL − (ψHDA + σT3 + δ4 + µ)IHUA,

dIHDA
dt

= ψHDA IHUA + θ5λH IUA + θ6λHT IUA − (ψHT + σT4 + δ5 + µ)IHDA,

dTHT
dt

= ψHU IHDA + θ7λHT + θ8λHTT − (σT5 + δ6 + µ)THT,

(5)

where

λH =
βH IH

N
, λT =

βT(IUA + η1T)
N

, λTH =
βT(η2 IHUA + η3 IHDA)

N
,

and

λHT =
βH(EHT + ϕ1 IHU + ϕ2 IHUA + ϕ3 IHDA + ϕ4 IHT)

N
.

It is pertinent to note that due to the fact that model (5) is monitoring the human population,
consequently, we assumed that all variables and parameters in the model are non-negative.
Therefore, we shall carry out the analysis of model (5) in the invariant region given as follows:

Ω1 =
{
(S(t), E(t), EL(t), EUL(t), IUA(t), T(t), R(t), IH(t), ETH(t), IHU(t), IHUA(t),

IHDA(t), THT(t)) ∈ ℜ13
+ : N ≤ π

µ

}
.

Model assumptions

In formulating our model, some assumptions have been considered which are listed as follows:
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• Individuals infected with tuberculosis can recover through treatment, but there is no treatment-
induced recovery for those infected with HIV [14, 19].

• Natural death occurs uniformly for all individuals in each class of the model at a constant rate
µ.

• The disease-induced death rate in all the infected compartments is uniform.
• We have not included in the model those individuals who progress from being infected with

HIV to being infected with AIDS after some time.
• In cognizance of the fact that findings show that 80% of individuals afflicted with HIV infection

are practically bound to suffer from TB infection [19], we assume that only those suffering from
TB affliction are infected with HIV infection.

Figure 1. Flow chart of co-infection model (5) where λH , λT , λHT , and λTH , are as defined in Eqs. (2) and (3),
respectively
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Invariance region

Lemma 1 The solution of the model equations is feasible for all t > 0, if they are contained in the invariant
region:

Ω1 = {S(t) + E(t) + EL(t) + EUL(t) + IUA(t) + T(t) + R(t) + IH(t) + ETH(t) + IHU(t)

+ IHUA(t) + IHDA(t) + THT(t)} ∈ ℜ13
+ }.

(6)

Proof Suppose

Ω1 = {S(t) + E(t) + EL(t) + EUL(t) + IUA(t) + T(t) + R(t) + IH(t) + ETH(t) + IHU(t)

+ IHUA(t) + IHDA(t) + THT(t)} ∈ ℜ13
+ },

be any solution of model Eq. (5) with non-negative initial conditions.

In the absence of disease-induced death rate, dN
dt becomes:

dN
dt

≤ π − µN,

we have

dN
dt

+ µN ≤ π.

Solving the equation above by multiplying both sides by eµt, the integrating factor

dN
dt

(eµt) + µN(eµt) ≤ π(eµt).

From the above equation, we obtain

d(Neµt) ≤ πeµtdt,

by integrating both sides of the above equation, we have that

Neµt ≤ πeµt

µ
+ k0.

Dividing all through by eµt, we have

N(t) ≤ π

µ
+ k0e−µt. (7)

Applying the initial conditions t(0) = N(0), we have

N(0) ≤ π

µ
+ k0,
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N(0)−
π

µ
≤ k0.

Eq. (7) becomes

N(t) ≤ π

µ
+

(
N(0)−

π

µ

)
e−µt. (8)

Therefore, the human population approaches the carrying capacity π
µ , as t → ∞. Obviously, the

feasible solution set of the model Eq. (5) enters the invariant region:

Ω1 = {(S(t) + E(t) + EL(t) + EUL(t) + IUA(t) + T(t) + R(t) + IH(t) + ETH(t) + IHU(t)

+ IHUA(t) + IHDA(t) + THT(t)) ∈ ℜ13
+ : N <

π

µ
},

where S(0) > 0, E(0) > 0, EL(0) > 0, EUL(0) > 0, IUA(0) > 0, T(0) > 0, R(0) > 0, IH(0) >
0, ETH(0) > 0, IHU(0) > 0, IHUA(0) > 0, IHDA(0) > 0, THT(0) > 0. Therefore, model (5) is
biologically and mathematically feasible. Hence whenever N > π

µ , then N < 0, which means
that the population reduces asymptotically to the carrying capacity. Whenever N ≤ π

µ , every
solution with an initial condition in Ω1, remains positive for all t > 0, and the model is said to be
mathematically well-posed and biologically meaningful.

Lemma 2 Let the initial condition be:

{S(0) > 0, E(0) > 0, EL(0) > 0, EUL(0) > 0, IUA(0) > 0, T(0) > 0, R(0) > 0, IH(0) > 0,

ETH(0) > 0, IHU(0) > 0, IHUA(0) > 0, IHDA(0) > 0, THT(0) > 0}.
(9)

Consequently, the solution set:

{S(t), E(t), EL(t), EUL(t), IUA(t), T(t), R(t), IH(t), ETH(t), IHU(t), IHUA(t), IHDA(t), THT(t)},

of the system of model Eq. (5) is positive for all t > 0.

Proof From the first equation of the model system (5), we have

dS
dt

= π − (λT + λH + λTH + λHT + µ) S,

dS
dt

= π − (λT + λH + λTH + λHT + µ) S ≥ − (λT + λH + λTH + λHT + µ) S.

Which can be re-written as

dS
S

≥ − (λT + λH + λTH + λHT + µ) dt.

Integrating the equation above, we have

ln S ≥ − (λT + λH + λTH + λHT + µ) t + k1,
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S(t) ≥ e−(λT+λH+λTH+λHT+µ)t+k1 ,

S(t) ≥ k1e−(λT+λH+λTH+λHT+µ)t.

Applying the initial conditions t = 0, S(0) = k1 gives

S(t) ≥ S(0)e−(λT+λH+λTH+λHT+µ)t, and (λT + λH + λTH + λHT + µ) > 0.

Similarly, the above integration can be shown for other state variables, for E(t) > 0, EL(t) > 0,
EUL(t) > 0, IUA(t) > 0, T(t) > 0, R(0) > 0, IH(t) > 0, ETH(t) > 0, IHU(t) > 0, IHUA(t) > 0,
IHDA(t) > 0, and THT(t) > 0.

3 Theoretical analysis of the model

To conduct the analysis of the model, we first analyze the singly infected system before proceeding
to analyze the dually infected system.

HIV-only model

To obtain the HIV-only model, we set all the TB components to zero as follows:

E = 0, EL = 0, EUL = 0, IHU = 0, T = 0, EHT = 0, IH = 0, IHUA = 0, IHDA = 0, IHT = 0.

Therefore, the HIV-only model is given by:

dS
dt

= π − (λH + µ)S,

dIH
dt

= λHS − (µ + δ1)IH,
(10)

where

λH =
βH IH

N
, and N(t) = S(t) + IH(t).

HIV-only disease-free equilibrium (DFE)
The DFE of the HIV-only model (10) is:

(S+, I+H ) = (
π

µ
, 0). (11)

Existence of endemic equilibrium point (EEP) of HIV-only model
The endemic equilibrium

(
S++, I++

H
)
, of the model Eq. (10) is given by:

(S++, I++
H ) = (

π

λ++
H + µ

,
πλ++

H
(λ++

H + µ)(µ + δ1)
).

The basic reproduction number
The threat posed by any infectious disease on humans depends on the rate at which it invades
a population. The measure of the potential for disease to spread in a population is the basic
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reproduction number (R0). It represents the average number of secondary cases of infection
that will be generated by the influx of just one infected person into a healthy population [18]. If
the reproduction number of the disease is less than unity (R0 < 1), when there is an influx of
at least one infected individual into a healthy population, then it means that, on average, each
infected individual produces less than one newly infected individual throughout an infection
period. In this case, the disease might gradually die out over time. On the other hand, if R0 > 1,
each infected individual produces, on average, more than one new infection, and the infection
will continue to spread rapidly in the given population. The basic reproduction number of the
HIV-only model (10) follows from [20] and is given by:

R0H = ρ(
βH

µ + δ1
).

Local stability of disease-free equilibrium of HIV-only model

Theorem 1 If ω1, ω2, . . . , ωn are the eigenvalues of the Jacobian matrix of the HIV-only model (10), its
disease-free equilibrium is locally asymptotically stable (LAS) whenever ω1, ω2, ..., ωn < 0.

Proof Let A = π − (λH + µ)S, and B = λHS − (µ + δ1)IH, we have that

∂A
∂S

= (λH + µ),
∂A
∂IH

= 0,

∂B
∂S

= λH,
∂B
∂IH

= −(µ + δ1).

The Jacobian matrix is given as:

J(ε f ) =

∣∣∣∣∣∣∣
∂A
∂S

∂A
∂IH

∂B
∂S

∂B
∂IH

∣∣∣∣∣∣∣ .

So that

J(ε f ) =
∣∣∣∣ −(λH + µ) 0

λH −(µ + δ1)

∣∣∣∣ ,

J(ε f − λI) =
∣∣∣∣ −(λH + µ)− λ 0

λH −(µ + δ1)− λ

∣∣∣∣ .

The characteristic equation of the matrix J(ε f − λI) is given by:

P(λ) = (−(λH + µ)− λ)(−(µ + δ1)− λ) = 0.

The eigenvalues of the characteristic equation P(λ), are

ω1 = λ1 = −(λH + µ), and ω2 = λ2 = −(µ + δ1).
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Observe that the eigenvalues ω1 < 0, and ω2 < 0. Hence, arising from Theorem 1, the disease-free
equilibrium of the model is locally asymptotically stable.

Local stability of endemic equilibrium point (EEP) of HIV-only model

The endemic equilibrium of the HIV-only model (10) is obtained by solving for the force of
infection (λ++

H ), at steady-state, giving:

(S++, I++
H ) =

(
π

λ++
H + µ

,
πλ++

H
(λ++

H + µ)(µ + δ1)

)
. (12)

In terms of the total subpopulation, we have:

N++ =
π(µ + δ1 + λ++

H )

(λ++
H + µ)(µ + δ1)

.

Substituting N++, and I++
H , into:

λ++
H = βH

I++
H

N++
,

we have:

λ++
H + (µ + δ1)(1 −R0H) = 0.

It implies that λ++
H = (µ + δ1)(R0H − 1). Hence, if R0H > 1, then λ++

H > 0. Therefore, the
HIV-only model (10) has a unique endemic equilibrium if R0H > 1. Next is to investigate the local
asymptotic stability (LAS) of the HIV-only model (10). We evaluate the Jacobian matrix of model
(10) at the EEP as follows:

J/EEP =

∣∣∣∣∣∣∣∣
−βH

I++2
H

N++2 −βH
S++2

N++2

βH
I++2
H

N++2 βH
S++2

N++2 − µ − σ1

∣∣∣∣∣∣∣∣ .

Evaluating the determinant, we have:

Det(J/EEP) = βH
I++2
H

N++2 (µ + σ1) +
µβHS++2

R0H
(1 −

1
R0H

).

The trace of the Jacobian matrix is given as:

Tr(J/EEP) = −µ −
βH
R0H

(R0H − 1).

It is clear that Det(J/EEP) > 0, and Tr(J/EEP) > 0, if R0H > 1. Using the Routh-Hurwitz criterion,
the conditions derived in the previous section indicate that the endemic equilibrium of the HIV-
only model (10) is locally and asymptotically stable if R0H > 1, provided that all the model
parameters remain positive. This means that HIV infection will invade the subpopulation.
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Global asymptotic stability of DFE of HIV-only model
To demonstrate that the model Eq. (10) do not undergo a backward bifurcation at R0H = 1, we
need to prove the global asymptotic stability (GAS) of the disease-free equilibrium (DFE) of the
model (10).

Theorem 2 The disease-free equilibrium (DFE) of model (10) is globally asymptotically stable (GAS) if
R0H ≤ 1, and it is unstable if R0H ≥ 1.

Proof We construct a linear Lyapunov function as follows:

L1 = IH. (13)

Differentiating (13) with respect to time (t) (where the dot represents derivative with respect to
time) we have:

L̇1 = İH = IH

(
βH

S
N

− (µ − δ1)

)
. (14)

Recall that S ≤ N, and N ≤ π
µ , for all t > 0, Eq. (14) becomes

L̇1 ≤ IH (µ − δ1) (R0H − 1) . (15)

Therefore L̇1 = 0, if R0H ≤ 1, with L̇1 = 0, if and only if IH = 0. Hence, it follows from Driessche
and Watmough in [20] that every solution to the HIV-only model (10) with non-negative initial
conditions converges to DFE as t → 0. At point IH = 0, in the first Eq. (10) yields S(t) → π

µ , as

t → ∞. Thus (S, IH) → (
π
µ , 0
)

. As t → ∞ for RH ≤ 1. Therefore, the disease-free equilibrium of
HIV-only model (10) is globally asymptotically stable in the region R0H ≤ 1.

Implication of Theorem 1 and Theorem 2:
Theorem 1 and Theorem 2, which center on the local stability of the disease-free equilibrium, form
the basis by which we obtained the threshold for disease control and are able to confirm that
the conditions for disease control have been met. As shown in the two theorems, the threshold
for disease control is that the reproduction number of the disease must be less than one. This
means that the introduction of a single infected individual into the susceptible human population,
considered to be free from HIV and TB infection, will fail to generate an average of a single infected
individual, resulting in the disease ultimately dying out in no time.

Global asymptotic stability of the EEP of HIV-only model
In this section, we consider the asymptotic stability of the endemic equilibrium point of HIV-only
model (10).

Theorem 3 The unique EEP of model (10) is globally asymptotically stable (GAS) in Ω1/Ω2, whenever
R̄0H > 1, and unstable whenever R̄0H < 1, and L2 = 0.

Proof Consider HIV-only model (10), with the conditions: R̄0H = R̄0H > 1, when L2 = 0, for
existence of unique equilibrium, therefore we construct the non-linear Lyapunov function of the
Goh-Volterra type as follows:

L2 = S − S++ − S++ ln
(

S
S++

)
+ IH − I++

H ln

(
IH

I++
H

)
. (16)
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Differentiating (16) with respect to time, yields

L̇2 = Ṡ −
S++

S
Ṡ +

(
İH −

I++
H
IH

İH

)
. (17)

From Eqs. (10) and (17), we have:

L̇2 = π − β̄H IHS − µS −
S++

S
(
π − β̄H IHS − µS

)
+ β̄H IHS − µIH −

I++
H
IH

(
β̄H IHS − µIH

)
, (18)

π = β̄H I++
H S++ + µS++, (19)

where

µ = β̄HS++. (20)

Putting (19) and (20) into (18) we have:

L̇2 = µS++

(
2 −

S++

S
−

S
S++

)
+ β̄H I++

H S++

(
2 −

S++

S
−

S
S++

)
. (21)

Observe that L̇2, is a Lyapunov function in Ω1/Ω2, and the endemic equilibrium of HIV-only
model (10) is unique under these conditions.

TB - only model

The TB-only model is obtained by setting all HIV components to zero in the co-infection model (5),
that is, setting: IH = 0, IHT = 0, IHU = 0, IHDA = 0, ITH = 0, to give TB-only model:

dS
dt

= π − λTS − µS,

dE
dt

= λTS + ε1λTR − (ψ1 + µ) E,

dEL
dt

= ψ1E − (ψ2 + σ1 + µ) EL,

dEUL
dt

= ψ2EL − (ψ3 + σ2 + µ) EUL,

dIUA
dt

= ψ3EUL − (ψ4 + σ3 + µ) IUA,

dT
dt

= ψ4 IUA − (ψ5 + σ4 + µ) T,

dR
dt

= σ1EL + σ2EUL + σ3 IUA + σ4T − ε1λTR − µR,

with

λT = βT
(IUA + η1T)

N
,
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where

N(t) = S(t) + E(t) + EL(t) + EUL(t) + IUA(t) + T(t) + R(t). (22)

It can equally be shown that the solution set of TB-only model (22) are all positive when they enter
the invariant region Ω3, defined as:

Ω3 =

{
S(t) + E(t) + EL(t) + EUL(t) + IUA(t) + T(t) + R(t) ∈ ℜ7

+ : N ≤ π

µ

}
.

Therefore, we can conclude that it is appropriate to analyze the transmission dynamics of the
TB-only model (22) within the domain Ω3. This allows us to consider the model as biologically
and mathematically well-posed, as indicated by previous studies [18].

Disease–free equilibrium (DFE) of TB-only model
To find the disease-free equilibrium of the TB-only model, we set all the disease components to
zero at a steady-state. Thus, we have:

Ω3 =
(
S+, E+, E+

L , E+
UL, I+UA, T+, R+

)
=

(
π

µ
, 0, 0, 0, 0, 0, 0

)
.

Local stability of disease-free equilibrium of TB-only model
To determine the local asymptotic stability (LAS) of the disease-free equilibrium (DFE) in the
TB-only model (22), we can use the next-generation matrix method. This approach is based
on the method proposed by Van den Driessche and Wartmough [20], which involves defining
a next-generation matrix where the new infection terms and the remaining transfer terms are
represented by, respectively.

F2 =


0 0 0 βT η1βT
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , V2 =


c1 0 0 0 0
−ψ1 c2 0 0 0

0 −ψ2 c3 0 0
0 0 −ψ3 c4 0
0 0 0 −ψ4 c5

 ,

where
c1 = (ψ1 + µ), c2 = (ψ2 + σ1 + µ), c3 = (ψ3 + σ2 + µ), c4 = (ψ4 + σ3 + µ), and c5 = (ψ5 + σ4 + µ).
ρ is the spectral radius of (F2V−1

2 ). It follows from [26] that, the effective reproduction number of
TB-only model (22) is given as

RT = ρ
(
F2V−1

2

)
,

⇒ RT =
βTψ1ψ2ψ3 (c5 + η1ψ4)

(ψ1 + µ) (ψ2 + σ1 + µ)(ψ3 + σ2 + µ)(ψ4 + σ3 + µ)(ψ5 + σ4 + µ)
. (23)

Lemma 3 The disease-free equilibrium (DFE) of the TB-only model (22) is locally asymptotically stable
whenever RT < 1, and unstable whenever RT > 1.
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The threshold parameter, denoted by RT, is the basic reproduction number for the TB-only model
(22), representing the average number of secondary TB infections caused by an infected individual
introduced to a population completely free of TB infections [26].
Based on Lemma 3, TB can be eradicated from the population if the initial sizes of the subpopula-
tion of the submodel are in the region of attraction of the DFE.

Analysis of the reproduction number for the TB-only model

It is important to analyze the basic reproduction number with respect to the treatment parameters,
in order to determine the sufficient and necessary conditions required to control and eradicate the
disease in the population. By taking the following limits, we can obtain:

lim
σ1→∞RT = 0, (24)

lim
σ2→∞RT = 0, (25)

lim
σ3→∞RT = 0, (26)

and

lim
σ4→∞RT =

βTψ1ψ2ψ3

(ψ1 + µ) (ψ2 + σ1 + µ)(µ + σ2 + ψ3)(ψ4 + σ3 + µ)
> 0. (27)

It can be inferred from the Eqs. (24)-(27) that implementing a control strategy that emphasizes
high treatment rates for undiagnosed and diagnosed latent TB infections, as well as undiagnosed
and diagnosed active TB infections, can lead to effective control of the disease in the population,
provided that the right-hand sides of these equations are reduced to less than one.
However, it should be noted that near-total eradication of TB can only be achieved if high treatment
rates are applied to all stages of the disease, rather than just focusing on the treatment of diagnosed
active cases, as the limit in Eq. (27) does not approach zero. Furthermore, the effect of the treatment
parameters and on the control of TB in the population can be determined by computing the partial
derivatives of the reproduction number with respect to these parameters. This analysis will shed
light on how changes in and impact the control of TB. Specifically, we obtain:

∂RT
∂σ1

= −
βTψ1ψ2ψ3 (µ + σ4 + ψ5 + η1ψ3ψ4)

(ψ1 + µ) (ψ2 + σ1 + µ)2(ψ3 + σ2 + µ)(ψ4 + σ3 + µ)(ψ5 + σ4 + µ)
< 0, (28)

∂RT
∂σ2

= −
βTψ1ψ2ψ3 (µ + σ4 + ψ5 + η1ψ3ψ4)

(ψ1 + µ) (ψ2 + σ1 + µ)(ψ3 + σ2 + µ)2(ψ4 + σ3 + µ)(ψ5 + σ4 + µ)
< 0, (29)

∂RT
∂σ3

= −
βTψ1ψ2ψ3 (µ + σ4 + ψ5 + η1ψ3ψ4)

(ψ1 + µ) (ψ2 + σ1 + µ)(ψ3 + σ2 + µ)(ψ4 + σ3 + µ)2(ψ5 + σ4 + µ)
< 0, (30)

and

∂RT
∂σ4

= −
βTψ1ψ2ψ3 (µ + σ4 + ψ5 + η1ψ3ψ4)

(ψ1 + µ) (ψ2 + σ1 + µ)2(ψ3 + σ2 + µ)(ψ4 + σ3 + µ)(ψ5 + σ4 + µ)
< 0. (31)



Bolaji et al. | 37

The results of the previous analysis indicate that effective treatment of undiagnosed and diagnosed
latently infected individuals, as well as undiagnosed and diagnosed actively infected individuals,
can have a positive impact on reducing the spread of TB in the population. This is supported
by the fact that the partial derivatives of the reproduction number with respect to the treatment
parameters were found to be negative. However, the analysis also revealed that a treatment
strategy that places a higher emphasis on the treatment of diagnosed actively-infected individuals
is more effective for controlling the disease than focusing on other stages of the disease.

Theorem 4 The treatment of individuals infected with TB, regardless of the stage of infection, will have a
positive impact on the dynamics of TB in the population.

Further analysis of the relationship between the reproduction number and treatment rates for
singly infected individuals with latent TB, as well as undiagnosed cases of latent TB, reveals that
increasing the values of the treatment parameters would lead to a corresponding decrease in the
value of the reproduction number. It was also found that a high treatment rate for individuals
with latent TB can compensate for a lower treatment rate for undiagnosed cases of latent TB by
reducing the value of the reproduction number to below unity. However, it is important to note
that this conclusion was based on the specific parameter values used in the analysis.

Figure 2. A contour plot of RT , as a function of σ1, and σ2, where parameter values are as given in Table 3

Existence of endemic equilibrium for the TB-only model

To find the endemic equilibrium point (EEP) of TB-only model (22) in the TB-only model (20)
context, we can set each equation of model (22) to zero and solve for the force of infection. This
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gives us:

S++ =

(
π

λ++
T + µ

)
, E++ =

(
πc2c3c4c5λ++

T (µ + η1λ++
T )

P

)
,

E++
L =

(
πψ1c1c3c4c5λ++

T (µ + η1λ++
T )

P

)
, E++

UL =

(
πψ1c3c4c5λ++

T (µ + η1λ++
T )

P

)
,

I++
UA =

(
πc1c2c3c5λ++

T (µ + η1λ++
T )

P

)
, T++ =

(
πc1c2c3c4λ++

T (µ + η1λ++
T )

P

)
,

R++ =
Q
P

, and N++ =
R
P

,

(32)

where

P = (µ + λ++
T )(c1c2c3c4c5(µ + η1λ++

T )

− η1λ++
T ψ1(σ1c3c4c5 + σ2ψ2c4c5 + σ3ψ2ψ3c5 + σ4ψ2ψ3ψ4c5 + σ4ψ2ψ3ψ4)),

Q = πψ1λ++
T (σ1c3c4c5 + σ2ψ2c4c5 + σ3ψ2ψ3c4 + σ4ψ2ψ3ψ4c5 + σ4ψ2ψ3),

R = c1c2c3c4c5
(
µ + η1λ++

T
)

πc2c3c4c5λ++
T
(
µ + η1λ++

T
)
+ πc1c2c4c5λ++

T
(
µ + η1λ++

T
)

+ πc1c2c3c5λ++
T
(
µ + η1λ++

T
)
− πψ1η1λ++

T (σ1c3c4c5 + σ2ψ2c4c5 + σ3ψ2ψ3c5 + σ4ψ2ψ3ψ4c5 + σ4ψ2ψ3)

+ πc1c2c3c4c5λ++
T
(
µ + η1λ++

T
)
+ πc1c2c3c4c5λ++

T
(
µ + η1λ++

T
)

+ πc1λ++
T (σ1c3c4c5 + σ2ψ2c4c5 + σ3ψ2ψ3c4 + σ4ψ2ψ3ψ4c5 + σ4ψ2ψ3ψ4).

It is important to note that on expansion, it can be shown that P > 0, and R > 0, likewise. By
letting the TB force of infection at a steady state by:

λ++
T = β++

T

(
I++
UA + η1T++

)
N++

. (33)

By substituting the values I++
UA , T++, and N++, above into the force of infection in (33), we obtain:

P0λ++2
T + P1λ++

T + P2 = 0, (34)

where

P0 = η1(c2c3c4c5 + ψ1c3c4c5 + ψ1ψ2c4c5 + ψ1ψ2ψ3c3c5 + ψ1ψ2ψ3ψ4c5 + ψ1ψ2ψ3ψ4),

P1 = η1c1c2c3c4c5(1 − RT)− η1σ1ψ1c3c4c5 − η1σ2ψ1c3c4c5 − η1σ3ψ1ψ2ψ3c4c5 − η1σ4ψ1ψ2ψ3ψ4c5

− η1σ4ψ1ψ2ψ3ψ4 + µc2c3c4c5 + µψ1c3c4c5 + µψ1ψ2c4c5 + µψ1ψ2ψ3c5 + µψ1ψ2ψ3ψ4c5

+ µψ1ψ2ψ3ψ4 + σ1ψ1c3c4c5 + σ2ψ1ψ2c4c5 + σ3ψ1ψ2ψ3c5 + σ4ψ1ψ2ψ3ψ4 + σ4ψ1ψ2 − 3ψ3ψ4,

P2 = µc1c2c3c4c5 (1 −RT) .

A careful look at the quadratic equation in (34) shows that P0, has a positive coefficient while P1
has a positive (negative) coefficient which depends on whether the basic reproduction number
RT is less (greater) than unity. From this, we establish the following results:

Lemma 4 The TB-only model (22) has:

• A unique endemic equilibrium if A2 < 0 ↔ RT > 1;
• A unique endemic equilibrium if A2 < 0, and A0 = 0, or A2

1 − 4A2 A0 = 0;
• Two endemic equilibria if A0 > 0, A1 < 0, and A21 − 4A2 A0 > 0, and RT < 1;
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• No endemic equilibrium otherwise.

From the above, the occurrence of item (22) gives rise to the suggestion of the possibility of the
existence of backward bifurcation in the TB-only model (22), where there is coexistence of locally
asymptotically stable DFE and locally asymptotically stable endemic equilibrium whenever the
basic reproduction number RT < 1. The causes of this kind of phenomenon in epidemiological
models were extensively discussed in the works of [9, 16, 27–29]. Biologically, the existence of
backward bifurcation in a model implies that the classical epidemiological requirement, that for
the effective control of a disease in a population, the basic reproduction number of the disease
must be less than unity, though necessary, in this circumstance, it is not sufficient for the effective
control of such a disease. Consequently, we now explore the existence of backward bifurcation in
the TB-only model (22).

Analysis of bifurcation
Consequently, it becomes highly imperative to explore the possibility of backward bifurcation in
the TB-only model (22) as follows:

Theorem 5 For the TB-only model (22) there is the exhibition of the phenomenon of backward bifurcation
at RT = 1, whenever the inequality ε1 > (ω2+ω3+ω4+ω5+ω6+ω7)(ω3+η1ω4)

ω8(ω3+η1ω4)
holds.

It should be noted that ε1, stands for the modification parameter accounting for reduced susceptibility to
tuberculosis reinfection after an individual has been successfully treated for a previous tuberculosis infection.

Proof Let

∆3 =
(
S++, E++, E++

L , E++
UL , I++

UA , T++, R++
)

, (35)

denote an arbitrary endemic equilibrium point of the TB-only model (22). We then investigate
whether a backward bifurcation exists in the model by using the ’center manifold theory’ [30].
For convenience, we carry out the following change of variables before applying the theory: Let
S = x1, E = x2, EL = x3, EUL = x4, IUA = x5, T = x6, and R = x7. Consequently, we rewrite
model (22) as follows:

ẋ1 ≡ f1 = π −
βT(x5 + η1x6)x1∑

i=1 xi
− µx1,

ẋ2 ≡ f2 =
ξ1βT(x5 + η1x6)x7∑7

i=1 xi
− c1x2,

ẋ3 ≡ f3 = ϕ1x2 − c2x3,

ẋ4 ≡ f4 = ϕ2x3 − c3x4,

ẋ5 ≡ f5 = ϕ3x4 − c4x5,

ẋ6 ≡ f6 = ϕ4x5 − c5x6,

ẋ7 ≡ f7 = σ1x3 + σ2x5 + σ3x5 + σ5x6 −
βT(x5 + η1x6)x2∑

i=1 xi
− µx7.

(36)

Considering a bifurcation parameter βT = β∗
T. By solving for βT = β∗

T, from RT, yields

β∗
T =

c1c2c3c4c5

ϕ1ϕ2ϕ3(1 + σ1)(c5 + µηϕ4 + ηϕ3ϕ4)
,

where



40 | Bulletin of Biomathematics, 2024, Vol. 2, No. 1, 21–56

c1 = (ϕ1 + µ), c2 = (ϕ2 + σ1 + µ), c3 = (ϕ3 + σ2 + µ), c4 = (ϕ4 + σ3 + µ), and c5 = (φ5 + σ4 + µ).
We then evaluate the Jacobian of the transformed system (36) evaluated at DFE (∆3) with βT = β∗

T,
to obtain

J(∆3) =



−µ 0 0 0 −β∗
T −η1β∗

T 0
0 −c1 0 0 β∗

T η1β∗
T 0

0 ϕ1 −c1 0 0 0 0
0 0 ϕ2 −c3 0 0 0
0 0 0 ϕ3 −c4 0 0
0 0 0 0 ϕ4 0 0
0 0 σ1 σ2 σ3 σ4 −µ


.

The matrix J∗ has a simple zero eigenvalue and the remaining eigenvalues have real parts
indicating that "center manifold theory" is applicable. It is noted that matrix J∗ has a right

eigenvector given by ω = (ω1, ω2, ..., ω7)
T, where ω1 =

−(β∗Tω5−η1β∗Tω5)
µ , ω2>0, ω3 = ϕ1ϕ2

c2
,

ω5 = ϕ1ϕ2ϕ3ω3
c2c3c4

, ω6 = ϕ1ϕ2ϕ3ϕ4ω2
c2c3c4c5

, and ω7 = σ1ω3+σ2ω4+σ3ω5+σ4ω6
µ . Similarly, J∗ has left eigenvectors

V = (v1, v2, ..., v7), satisfying v.ω = 1, with v1 = 0, v2 = ϕ1v3
c1

, v3>0, v4 = c2v3
ϕ2

, v5 = c2c3ω2
ϕ3

,

v6 =
η1β∗Tϕ3ϕ1

c1c5
, and v7 = 0.

Arising from Theorem 4.1 in [30] computation of the associated non-zero partial derivatives of
f (x), evaluated at DFE (∆3), the associated bifurcation coefficients a, and b defined as

a =
∑

vkωiωj
∂2 fk

∂xi∂xj
(0, 0), and b =

∑
vkωi

∂2 fk
∂xi∂β∗

T
(0, 0),

are: a = 2v2η1βT
µ
π (ω3ω7 + ω4ω7)− 2v2η1βT

µ
π (ω2ω3 + ω3ω5 + ω3ω6 + ω2

3 + ω3ω7 + ω3ω4)−

2v2η1βT ∗ µ
π (ω2ω4 + ω4ω5 + ω3ω4 + ω4ω7 + ω2

4 + ω4ω5 + ω4ω6), and b = v2ω3 + η1v2ω4 >

0, with v2, ω2, ω3, ω4, ω5, ω6, and ω7, being positive. Consequently, due to the fact that the
bifurcation coefficient b > 0, it can be deduced from Theorem 4.1 in [30] that the TB-only model
(22) undergoes the phenomena of a backward bifurcation whenever the backward bifurcation
coefficient a > 0. This is so if

ϵ1 >
(ω2 + ω3 + ω4 + ω5 + ω6 + ω7)(ω3 + η1ω4)

ω8(ω3 + η1ω4)
= ϵ∗ (37)

holds. It should be recalled that ϵ1, stands for the modification parameter accounting for the reduc-
tion in susceptibility to tuberculosis reinfection after an infected individual has been successfully
treated for a previous tuberculosis infection. It should be noted that all parameters of model (22)
are non-zero, and β∗

T > 0. Setting ϵ1 = 0, the bifurcation coefficient a, is reduced to

a = −[2v2β∗
T

µ

π
(ω2ω3 + ω3ω5 + ω3ω6 + ω2

3 + ω3ω6 + ω3ω4)

+ 2v2η1β∗
T

µ

π
(ω2ω4 + ω4ω5 + ω3ω4 + ω4ω7ω2

4 + ω4ω6 + ω4ω6)],
(38)

with v2 > 0, ω2 > 0, ω3 > 0, ω4 > 0, ω5 > 0, ω6 > 0, and ω7 > 0, where each of them are
as defined earlier. Consequently, since b > 0, it can be deduced from Theorem 4.1 in [30] that
the TB-only model (22) does not undergo a backward bifurcation if ϵ = 0, since the backward
bifurcation coefficient a < 0. The revelation from here is that the cause of backward bifurcation in
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the model (22) is the susceptibility to tuberculosis reinfection after a successful treatment from
a previous infection. Obviously, for the TB-only model (22) to undergo backward bifurcation at
RT = 1, requires that the bifurcation coefficient a > 0, for ϵ1, is of greater value than the quantity
on the right-hand side of (37), that is ϵ1 > ϵ∗. On the other hand, if ϵ1 < ϵ∗, model (22) will not
undergo backward bifurcation at RT = 1. As a matter of fact, if ϵ1 = 0, for the TB-model (22), there
will be the existence of the phenomenon of backward bifurcation. See Figure 3 for the schematic
diagram of the phenomenon of backward bifurcation that the TB-only model (22) undergoes.

Figure 3. Bifurcation diagram of the TB-only model

Global asymptotic stability of DFE of TB-only model
In this section, we remove the cause of backward bifurcation, by setting ε1 = 0, and then show
that the given model (22) is globally asymptotically stable.

By considering model (22) with ε1 = 0, the following is claimed:

Theorem 6 The DFE of TB-only model (22) is globally asymptotically stable in Ω3, whenever the repro-
duction number RT < 1.

See the proof of this theorem in ‘’Appendix A”. The implication of Theorem 6 epidemiologically is
that a previous infection of the disease covers a lifelong immunity to reinfection of susceptible
individuals to tuberculosis. Thus, tuberculosis can ultimately be eradicated from the given human
population when the reproduction number RT < 1.
Furthermore, since with ε1 = 0, the global stability of the DFE of the TB-only model (22) follows if
RT < 1, from here, we carry out the estimates of the range of values of the treatment parameters
σ1, σ2, σ3, and σ4, for which the objectives of tuberculosis eradication is possible. When we set
RT < 1, and make the treatment parameters σ1, σ2, σ3, and σ4, the subject of the expression in the
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reproduction number of the model (22), we obtain the following:

σ1 > βTψ1ψ2ψ3
(c5 + η1ψ4)

(ψ1 + µ) (ψ3 + σ2 + µ)(ψ4 + σ3 + µ)(ψ5 + σ4 + µ)
− (ψ2 + µ),

σ2 > βTψ1ψ2ψ3
(c5 + η1ψ4)

(ψ1 + µ) (ψ2 + σ1 + µ)(ψ4 + σ3 + µ)(ψ5 + σ4 + µ)
− (ψ3 + µ),

σ3 > βTψ1ψ2ψ3
(c5 + η1ψ4)

(ψ1 + µ) (ψ2 + σ1 + µ)(ψ3 + σ2 + µ)(ψ5 + σ4 + µ)
− (ψ4 + µ),

σ4 > βTψ1ψ2ψ3
(c5 + η1ψ4)

(ψ1 + µ) (ψ2 + σ1 + µ)(ψ3 + σ2 + µ)(ψ4 + σ3 + µ)
− (ψ5 + µ).

(39)

If the inequalities in (39) above are satisfied, then the reproduction number RT < 1, and tubercu-
losis can be completely eradicated in the human population.
However, from the first inequalities in (39), if

βTψ1ψ2ψ3
(c5 + η1ψ4)

(ψ1 + µ) (ψ3 + σ2 + µ)(ψ4 + σ3 + µ)(ψ5 + σ4 + µ)
< (ψ2 + µ),

then treating individuals that are latently-infected with TB is not necessary as σ1 = 0, will result
in RT < 1. Likewise, the same results are obtained from other inequalities in (39).

4 Analysis of the co-infection model of TB-HIV

We carry out the analysis of the HIV-TB Co-infection model (5) for its basic properties as follows:

Local asymptotic stability of the DFE of the TB-HIV co-infection model

The disease free equilibrium of the TB-HIV co-infection model (5) is as given below:

D4 =
(
S+, E+, E+

L , E+
UL, I+UA, T+, R+, I+H , E+

HT, I+HU , I+HUA, I+HDA, T+
HT
)

=

(
π

µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

)
.

(40)

By using the next-generation matrix method, we obtain the Local Asymptotic Stability (LAS)
of the DFE of co-infection model (5). It follows from Driessche and Watmough in [20] which is
defined by FV−1. Where F, and V, are the terms for new infection and the terms for the remainder
respectively, given as:

F =



0 0 0 βT η1βT 0 0 0 η2βT η3βT 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 βH βH ϕ1βH ϕ2βH ϕ3βH ϕ4βH
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0



,
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and

V =



c1 0 0 0 0 0 0 0 0 0 0
−ψ1 c2 0 0 0 0 0 0 0 0 0

0 −ψ2 c3 0 0 0 0 0 0 0 0
0 0 −ψ3 c4 0 0 0 0 0 0 0
0 0 0 −ψ4 c5 0 0 0 0 0 0
0 0 0 0 0 c6 −σT1 −σT2 −σT3 −σT4 0
0 0 0 0 0 0 c7 0 0 0 0
0 0 0 0 0 0 0 c8 0 0 0
0 0 0 0 0 0 0 −ψHUA c9 0 0
0 0 0 0 0 0 0 0 −ψHDA c10 0
0 0 0 0 0 0 0 0 0 −ψHU c11



,

where
c1 = (ψ1 +µ), c2 = (ψ2 +σ1 +µ), c3 = (ψ3 +σ2 +µ), c4 = (ψ4 +σ3 +µ), c5 = (ψ5 +σ4 +µ), c6 =

(δ1 + µ), c7 = (ψHU + σT1 + δ2 + µ), c8 = (ψHUA + δ3 + σT2 + µ), c9 = (ψHDA + σT3 + δ4 + µ),
c10 = (ψHT + σT4 + δ5 + µ), and c11 = (σT5 + δ6 + µ).
Consequently, arising from [26], the basic reproduction number for the disease is obtained as:

RC = ρ
(

FV−1
)
= max {RH,RT} ,

where

RH =
βH

(µ + σ1)
, and RT =

βTψ1ψ2ψ3 (c5 + η1ψ4)

(ψ1 + µ) (ψ2 + σ1 + µ)(ψ3 + σ2 + µ)(ψ4 + σ3 + µ)(ψ5 + σ4 + µ)
.

That is,

RC =
βTψ1ψ2ψ3 (c5 + η1ψ4)

(ψ1 + µ) (ψ2 + σ1 + µ)(ψ3 + σ2 + µ)(ψ4 + σ3 + µ)(ψ5 + σ4 + µ)
. (41)

It should be noted that Theorem 2 in [20] gives rise to the result below.

Lemma 5 The disease-free equilibrium, (DFE), D4 of the co-infection model (5), is locally asymptotically
stable (LAS) whenever the reproduction number of the model is less than unity (RC < 1), and unstable
when RC > 1.

It is pertinent to note that the quantity RC = max{RH,RT}, is the effective reproduction number
of the co-infection model (5), in which case is previously defined. By adopting the same approach
as we did in Section 3, it can be shown that there is an exhibition of the phenomenon of backward
bifurcation at RC = 1, for co-infection model (5). It is pertinent to note that the same conclusion
is arrived at for TB-only model (22) in the previous section, that susceptibility to tuberculosis
reinfection after a successful treatment of the disease is the cause of this backward bifurcation in
the co-infection model (5).

Theorem 7 There is an exhibition of backward bifurcation at RC = 1, for co-infection model (5) whenever

ε1 >
(ω2 + ω3 + ω4 + ω5 + ω6 + ω7 + ω8) (ω3 + η1ω4)

ω8 (ω3 + η1ω4)
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holds.

For the proof of this theorem, see ‘’Appendix B”.

5 Sensitivity analysis and uncertainty analysis of TB-only model

In the TB-only model, many parameters are involved in its formulation. Therefore, expectedly,
uncertainties do arise in the estimation of the values of these parameters adopted for the numerical
simulations of the model. By adopting the approach in [16, 26, 31], using Latin hypercube sampling
(LHS), we carried out in this section, uncertainty analysis with a view to accounting for the
effect that such uncertainties have on the numerical simulation results obtained in this work.
Additionally, by using partial rank correlation coefficients (PRCC), we equally carried out a global
sensitivity analysis to quantify the impact of the variations or sensitivity of each parameter on the
associated numerical simulations.

The Latin hypercube sampling (LHS) method is adopted here by defining baseline values and
ranges for each of the parameters of the TB-only model (22), as stated in Table 3, where multiple
runs for NR = 1000, are done for the sample data for the response output [26, 31]. In this case, it
is the control reproduction number RT. It is worth mentioning that each parameter is assumed to
obey a uniform distribution [32].

On the other hand, we computed the sensitivity of the parameters in the Tuberculosis-only model
(22) by finding PRCC between each parameter and the control reproduction number RT. The
values of these PRCC values making up the effective reproduction number of the model (22) are as
given in Table 2, while Figure 4 gives the distribution of PRCC values. From the PRCC distribution
in Figure 4, it could be seen that the transmission rate for tuberculosis βT, the modification
parameters that account for the infectiousness of infected individuals with TB-only η1, and the
treatment rates for singly infected individuals with latently-infected TB, σ1, are the parameters
that play a dominant role in driving the dynamics of tuberculosis with respect to the response
function RT. It is worth mentioning that while βT, and η1, are positively correlated with the
response function RT, on the other hand, σ1, is negatively correlated with the response function
RT. The epidemiological implication of this is that tuberculosis can be effectively controlled and
eradicated by procuring all strategies that can help minimize the transmission rate of the disease,
such as measures like public awareness and educational enlightenment campaigns for susceptible
individuals always to cover their mouth when coughing or sneezing, and the need for infants to
be vaccinated against tuberculosis.

Likewise, the infectiousness of individuals with latent tuberculosis can be minimized by testing
and adequate treatment of latently infected individuals.

Table 2. PRCC values of the parameters of TB-only model (22), with RT , as the output (response function).
Parameter values and ranges used are as given in Table 3

S/N Parameters PRCC (RT)
1. βT 0.9013
2. σ1 0.0412
3. u2 -0.03712
4. σ2 -0.3124
5. ψ3 -0.4021
6. ψ2 -0.4202
7. η1 0.5633
8. σ3 -0.6234
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Figure 4. Schematic diagram of the sensitivity indices for the TB-only model (22). Values and ranges of parameters
used are as given in Table 3

6 Numerical simulation

For the illustration of some of the theoretical results obtained earlier in this study, it is necessary to
conduct numerical simulations of the co-infection model. We performed numerical simulations
of the model using the parameter values presented in the table below. The numerical simulation
of the model was carried out using MATLAB’s ODE45 solver, which is well-known for its high
convergence, consistency, and stability. The embedded numerical scheme in MATLAB, like other
computing software such as Maple, Mathematica, and Scientific Workplace, is known for its
reliability and efficiency in numerical simulations of epidemiological models.

Table 3. Values of parameters of the co-infection model (5) with the total population of Nigeria as of January 1st,
2023 estimated at 200,000,000 (real-life data as obtained from National Population Commission (NPC) of Nigeria)

Parameter Baseline (Range) Sources
π 5,000 [3,500 - 6500] year−1 [1]
µ 0.02043 [0.02034 - 0.02052]

year−1
[16]

βT(βH) 0.1 year−1 [1]
σ1, σ2, σ3, σ4 0.7, 0.7, 0.7, 0.7 year−1 [15]
σT1, σT2, σT3, σT4 0.7, 0.7, 0.7, 0.7 year−1 [15]
ψ1, ψ2, ψ3, ψ4 6, 4.18, 2.5, 3 year−1 [16]
ψHU , ψHUA, ψHDA, ψHT 6, 4.5, 3, 3 year−1 [16]
ε1, ε2 1, 1.2 [0.8-1.2, 1-1.5] Assumed
γ1, γ2 0.6, 0.8 [0-1, 0-1] Assumed
θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8 3.2, 3, 3.2, 2, 2, 2, 2, 2 [2.8-3.6,

2.5-3.5, 1.7 -2.3]
[16]

η1, η2, η3 1.2, 1.3, 1.5 [1-2, 0.9-1.7, 1-2.3] [16]
ϕ1, ϕ2, ϕ3, ϕ4 1.3, 1.7, 1.2, 1.1 [1-1.6, 1-2.4,

0.8-1.6, 0.7-1.5, 0.75-1.25]
[16]

δ1, δ2, δ3, δ4, δ5, δ6 0.08, 0.05, 0.8, 0.1, 0.1, 0.01
year−1

[15]
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(a) Incidence of diagnosed latently infected
individuals with TB with the effect of σ1

(b) Incidence of diagnosed latently infected
individuals with TB with the effect of σ2

(c) Incidence of diagnosed latently infected
individuals with TB with the effect of σ3

(d) Incidence of diagnosed latently infected
individuals with TB with the effect of σ4

Figure 5. Incidence of diagnosed latently infected individuals with TB with the effect of σ

(a) Cumulative number of new cases of dually
infected HIV-TB with the effect of σT3

(b) Cumulative number of new cases of dually
infected HIV-TB with the effect of σT4

Figure 6. Cumulative number of new cases of dually infected HIV-TB with the effect of σ



Bolaji et al. | 47

(a) Cumulative number of new cases of TB with
the effect of σ1

(b) Cumulative number of new cases of
Tuberculosis with the effect of σ3

(c) Cumulative number of new cases of TB with
the effect of σ4

Figure 7. Cumulative number of new cases of TB with the effect of σ

Discussion of numerical simulation of the model

For the simulation of the co-infection model for dually infected individuals with the two diseases
TB and HIV, from Figure 5a, it is observed that there is a steady rise in the number of cumulative
cases for dual infection until day eighteen when it flattens out with a slight drop in its values as
the treatment rate σT1 increases. Likewise, from Figure 5b, it is observed that there is a steady rise
in the number of cumulative cases of dually infected individuals with the two diseases until about
day twenty, for an increase in treatment rate σT2, accompanied by a slight drop in the values of
the cumulative number of new cases of dually infected individuals. However, as observed from
Figure 5c, there is a significant effect of the treatment rate σT3 on the cumulative number of new
cases of dually infected individuals of HIV-TB. As the treatment rate increases, it is accompanied
by a drop in the values of the cumulative number of new cases of infections of individuals infected
with both diseases. The same effect is observed for the treatment rate σT4 on the cumulative
number of new cases of individuals infected with both diseases, as seen in Figure 5d.
From Figure 6a, it can be seen that the cumulative number of new cases of TB rises steadily until
day three when it flattens out with an increase in the values of the treatment rates σ1. In Figure 6b,
we observe that the cumulative number of new cases of TB rises generally and starts flattening out
almost immediately with a drop in the values of the cumulative number of new cases of TB as the
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treatment rate σ2 increases. Similarly, there is a significant effect of treatment rate σ4 on the value
of the cumulative number of new cases of TB, which drops as the treatment rate is increased.
The reproduction number RC for the TB-HIV co-infection model (5) is 0.0715997. As shown
in Figure 7a, where we plotted the incidence of diagnosed latently infected individuals with TB
with the effect of treatment rate σ1, there was a general steady rise in the first two days followed by
a decline until day ten, when it flattens out as the treatment rate increases. From Figure 7b, it can
be observed that the incidence of diagnosed latently infected individuals decreases steadily until
day seven when it flattens out as the treatment rate σ2 decreases in value. Similarly, in Figure 7c,
the incidence of diagnosed latently infected individuals decreases from day one and flattens out
immediately as the treatment rate σ3 increases. The implication of this is that as the values of the
treatment rates σ1, σ2, and σ3 increase, there is a decrease in the incidence of the disease, ultimately
bringing the disease under control.

7 Findings from the research work

The major findings from this work are:

• The HIV-only model possesses a locally asymptotically stable disease-free equilibrium whenever
the associated reproduction number RH is less than unity.

• The co-infection model (5) and the TB-only model (22) undergo the phenomenon of backward
bifurcation due to susceptibility to TB re-infection after recovery from previous tuberculosis
infection. The implication of this is that the classical requirement that the reproduction number
of the disease be less than unity, though still necessary for disease control, is no longer sufficient
for its control, meaning that more strategies are needed to be procured for effective control of
the disease in the given population.

• When the cause of backward bifurcation is removed from the TB-only model and the co-infection
model, the disease-free equilibrium of the TB-only model and co-infection model is shown to be
locally asymptotically stable when the associated reproduction number RT is less than unity.

• The disease-free equilibrium of the TB-only model and that of the co-infection model are each
shown to be locally asymptotically stable when the associated reproduction number RT and
RC respectively are not up to unity.

• From the sensitivity and uncertainty analysis of the TB model, it could be seen that the trans-
mission rate for tuberculosis βT, the modification parameters accounting for the infectiousness
of infected individuals with TB-only η1, and the treatment rates for singly infected individuals
with latently-infected TB, σ1 are the three top drivers of tuberculosis infection in the given
population.

• From the numerical simulation of the model, it could be seen that different treatment rates
have a significant effect on the reduction of the incidence of tuberculosis infection and on the
cumulative number of new cases of TB-HIV co-infection.

Of importance is the revelation that through this work, it has been shown that with adequate
treatment of tuberculosis, even though there is currently no treatment available for HIV, the
burden of the co-infection of the two diseases will be significantly reduced in the population. It is
pertinent to note that this work has made a modest contribution to the control of the spread of
tuberculosis and HIV in a population where both diseases are co-circulating.

8 Recommendations

The primary purpose of research in mathematical epidemiology is to provide healthcare policy-
makers with evidence-based recommendations that can guide the formulation of effective policies
for controlling the spread of contagious diseases and reducing the burden of disease in both
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human and animal populations. With this objective in mind, it is essential to present actionable
recommendations that can be readily utilized by healthcare policymakers. Below are some crucial
recommendations:

• Every effort must be made to launch a comprehensive educational campaign aimed at individu-
als who are susceptible to TB. The campaign should emphasize the importance of consistently
covering their mouths when coughing or sneezing in public spaces. Additionally, ensuring that
infants receive vaccination against the disease should be a priority.

• It is essential to implement a highly visible awareness program targeting all members of
communities. This program should stress the significance of practicing safe sexual activities by
consistently using condom protection during sexual encounters.

• A comprehensive educational awareness campaign is crucial for educating all individuals about
the importance of being cautious to avoid contact with bodily secretions and droplets from
infected patients. Additionally, it is essential to implement appropriate measures to prevent the
vertical transmission of these diseases.

• A campaign should be initiated to encourage regular screening for both diseases among indi-
viduals. It is imperative that infected individuals seek prompt medical attention as soon as they
are aware of their status.

9 Conclusion

In this research work, we developed a co-infection model to gain insights into the transmission
of HIV-Tuberculosis in a human population where HIV treatment is not readily available but
tuberculosis treatment is accessible. We rigorously analyzed both the HIV-only and TB-only
models to understand their fundamental properties. Subsequently, we extended our analysis to
the co-infection model.
The key contributions in this work are:

• We show that the disease-free equilibrium of the sub-models and the full co-infection model
were locally asymptotically stable.

• We conducted a rigorous analysis of the reproduction number to identify parameters that can
reduce the spread of the disease.

• We conducted the sensitivity analysis to identify key parameters that drive the infectiousness of
each of the diseases and that which is of great influence on the co-infection of both diseases.

• The theoretical results were validated appropriately with numerical simulations, and the plots
from the simulations were extensively interpreted.

• We plotted contour plots involving key parameters and the reproduction numbers for the
diseases with a view to determining the threshold for control and measures that can help
eradicate the disease from the human population.

Specifically, by using parameter values sourced from existing literature and employing the MAT-
LAB programming language, we conducted numerical simulations of the model, allowing us to
validate the theoretical results obtained from the model analysis. Our findings revealed that a
specific subgroup of individuals, those with varying treatments for tuberculosis, plays a pivotal
role in significantly reducing the disease burden caused by co-infection. Notably, our simulations
highlighted that targeting treatment towards individuals with tuberculosis in the diagnosed latent
infection stage (whether singly or dually infected with HIV) is an effective strategy for reducing
both the co-infection disease burden and HIV incidence within the studied population. This
work’s merit lies in demonstrating the promising potential for controlling co-infection when HIV
treatment is not readily accessible.
Furthermore, the outcomes of this study can be valuable for healthcare policymakers, especially
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in regions with limited healthcare resources. In societies where tuberculosis treatment, albeit occa-
sionally scarce, is available while HIV treatment is not, our results suggest that careful application
of these findings can aid in formulating robust public awareness campaigns and disease control
strategies. Ultimately, this approach has the potential to reduce the incidence and prevalence of
both HIV and tuberculosis in populations where these diseases co-circulate.
The formulation of our model has a notable limitation: it does not account for the simultaneous
transmission of both diseases from the same source. We acknowledge that this is a potential
scenario, as suggested by the findings of Ciesielski et al. [33], where they demonstrated the
possibility of an individual acquiring both HIV and Hepatitis C virus (HCV) from a single source.
As an area for further contribution to knowledge by other researchers, this work can be extended
by incorporating time-dependent control functions into the proposed model. This extension
would yield a model with optimal control, facilitating the development of optimal strategies for
preventing the spread of the disease within the given population and implementing other strate-
gies to mitigate the disease burden. Furthermore, the model proposed herein can be reformulated
as a fractional-order model, incorporating fractional-order derivatives. The resulting system of
nonlinear fractional-order derivatives can be solved using appropriate methods, such as Laplace
Adomian decomposition or other techniques commonly employed for solving fractional-order
models.
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Appendix A: Proof of Theorem 6

Proof Consider the following linear Lyapunov function

g2 = ψ1 (c3 + ψ2η1) E + c1 (c3 + ψ2η1) IUA + c3c3c3T.

With Lyapunov derivatives

ġ2 = (IUA + η1T)
[

βTS
N

(ψ1 (c3 + ψ2η1)− c1c2c3)

]
,

ġ2 = c1c2c3 (IUA + η1T)
[
S/NRT − 1

]
.

By taking note that S(t) ≤ N(t), and N(t) ≤ π/
µ, in Ω2, for all t > 0, it follow from the above that

ġ2 = c1c2c3 (IUA + η1T) (RT − 1).

Hence, ġ2 ≤ 0, if RT ≤ 1, with ġ2 = 0, if and only if E = EL = EUL = IUA = T = R = 0.
Therefore, ġ2, is a Lyapunov function in Ω2, and it follows from Lasalle’s invariance principle [34]
that every solution to the equations in TB-only model (22) with initial conditions in Ω2, converges
to ξ, as t → ∞. That is, (E(t), EL(t), EUL(t), IUA(t), T(t), R(t)) → (0, 0, 0, 0, 0, 0), as t → ∞. By
substituting E = EL = EUL = IUA = T = R = 0, into the first equation in model (22) with S(t) →
π/

µ, as t → ∞. Therefore (S(t), E(t), EL(t), EUL(t), IUA(t), T(t), R(t)) → (
π/

µ, 0, 0, 0, 0, 0, 0
)

, as
t → ∞, for RT ≤ 1, so that the DFE, ξ, of TB-only model (22) is locally asymptotically stable in Ω2,
when RT ≤ 1.

Appendix B: Proof of Theorem 7

Proof For convenience, let S = x1, E = x2, EL = x3, EUL = x4, IUA = x5, T = x6, R = x7, IH = x8,
EHT = x9, IHU = x10, IHUA = x11, IHDA = x12, and THT = x13. It then follows that the model (22)
can be rewritten as:

ẋ1 ≡ f1 = π −
βT (x5 + η1x6) x1

N
−

βHx8x1

N
−

βT (η2x11 + η3x12) x1

N

−
βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x1

N
− µx1,

ẋ2 ≡ f2 =
βT (x5 + η1x6) x1

N
−

βT (η2x11 + η3x12) x1

N
+

ε1βT (x5 + η1x6) x7

N
+

βT (η2x11 + η3x12) x7

N

−
βHx8x2

N
−

ε2βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x2

N
− c1x2,

ẋ3 ≡ f3 = ψ1x2 −
ϕ1βHx8x3

N
−

ϕ2βT (η2x11 + η3x12) x3

N
− c2x3,

ẋ4 ≡ f4 = ψ2x3 −
ϕ3βHx8x4

N
−

ϕ4βHx8x4

N
− c3x4,

ẋ5 ≡ f5 = ψ3x4 −
ϕ5βHx8x5

N
−

ϕ6βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x5

N
− c4x5,

ẋ6 ≡ f6 = ψ4x5 −
θ7βHx8x6

N
−

ϕ8βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x6

N
− c5x6,

(42)
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ẋ7 ≡ f7 = σ1x3 + σ2x4 + σ3x5 + σ4x6 −
ε1βT (x5 + η1x6) x7

N
−

ε2βT (η2x11 + η3x12) x7

N

−
βHx8x7

N
−

ε2βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x6

N
− µx7,

ẋ8 ≡ f8 =
βHx8x1

N
+

βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x1

N
−

ψ1βT (x5 + η1x6) x7

N

+
βHx8x1

N
+

βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x6

N
−

ψ2βT (η2x11 + η3x12) x8

N
+ σT1x9 + σT2x10 + σT3x11 + σT4x12 + σT5x13 − c6x8,

ẋ9 ≡ f9 =
σ1βT (x5 + η1x6) x8

N
+

σ2βT (η2x11 + η3x12) x8

N

+
βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x6

N
− c7x9,

ẋ10 ≡ f10 = ψHUx9 +
θ1βHx8x3

N
+

θ2βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x3

N
− c8x10,

ẋ11 ≡ f11 = ψHUAx10 +
θ3βHx8x4

N
+

θ4βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x4

N
− c9x11,

ẋ12 ≡ f12 = ψHDAx11 +
θ5βHx8x5

N
+

θ6βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x5

N
− c10x12,

ẋ13 ≡ f13 = ψHUx12 +
θ7βHx8x6

N
+

θ8βH (x9 + ϕ1x10 + ϕ2x11 + ϕ3x12 + ϕ4x13) x6

N
− c11x13,

(43)

where N = x1 + x2 + x3 + x4 + x5 + x6 + x7. The Jacobian of the transformed system evaluated at
DFE is given by:

J∗ (ξ0) =

(
J1(7×7) J2(7×6)
J3(6×7) J4(6×6)

)
,

where

J1 =



−µ 0 0 0 −β∗
T −η1β∗

T 0
0 −c1 0 0 β∗

T η1β∗
T 0

0 ψ1 −c2 0 0 0 0
0 0 ψ2 −c3 0 0 0
0 0 0 ψ3 −c4 0 0
0 0 0 0 ψ4 −c5 0
0 0 σ1 σ2 σ3 σ4 −µ


,

J2 =



β∗
H β∗

H − (η2β∗
T + ϕ2β∗

H) − (η3β∗
T + ϕ3β∗

H) −η2β∗
T −η3β∗

T
0 0 η2β∗

T η2β∗
T 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,
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J3 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

J4 =



β∗
H − c6 β∗

H ϕ1β∗
H + σT1 ϕ2β∗

H + σT2 ϕ3β∗
H + σT3 ϕ4β∗

H + σT4
0 −c7 0 0 0 0
0 ψHU −c8 0 0 0
0 0 ψHUA −c9 0 0
0 0 0 ψHDA −c10 0
0 0 0 0 ψHT −c11


.

We consider the case with βT = β∗
T, a bifurcation parameter. By solving for βT = β∗

T, from RT,
yields:

β∗
T =

c1c2c3c4c5

ψ1ψ2ψ3 (1 + σ1) (c5 + µηψ4 + ησ2ψ4 + ηψ3ψ4)
,

where c1 = (ψ1 + µ), c2 = (ψ2 + σ1 + µ), c3 = (ψ3 + σ2 + µ), c4 = (ψ4 + σ3 + µ), and c5 =

(ψ5 + σ4 + µ).
It is noted that matrix J∗ (ξ0), has a right eigenvector given by: w = (w1, w2, ...w13)

T, where

w1 =
−(β∗Tw5−η1β∗Tw5)

µ , w2 > 0, w3 = ψ1w2
c2

, w4 = ψ1ψ2w2
c2c3

, w5 = ψ1ψ2ψ3w2
c2c3c4

, w6 = ψ1ψ2ψ3ψ4w2
c2c3c4c5

,

w7 = σ1w3+σ2w4+σ3w5+σ4w6
µ , w8 = w9 = w10 = w11 = w12 = w13 = 0.

Similarly, the component of the left eigenvectors of J∗ (ξ0)|βT=β∗T
,v = (v1, v2, ...v13), satisfying

v.w = 1, are
v1 = 0, v2 = ψ1v3

c1
, v3 > 0, v4 = c2v3

ψ2
, v5 = c2c3w2

ψ3
, v6 =

η1β∗Tψ3ψ1
c1c5

, v7 = v8 = v9 = 0, v10 =
ψUAv11

c8
, v11 =

ψHUAv12+ϕ2β∗Tv2
c9

, v12 = v13 = 0. It then follows from Theorem 4.1 in [30] that by
computing the associated nonzero partial derivatives of f (x), evaluated at the DFE (D3), the

associated bifurcation coefficients a, and b, are defined as: a =
∑n

k,i,j=1 vkwiwj
∂2 fk

∂xi∂xj
(0, 0), and

b =
∑n

k,i,j=1 vkwi
∂2 fk

∂xi∂β∗T
(0, 0), are computed to be:

a = 2v2ε1β∗
T

µ

π
(w3w7 + ϕ1w4w7)

−2v2β∗
T

µ

π

(
w2w3 + w3w5 + w3w6 + w3w7 + w2

3 + w3w7 + w3w4

)

−2v2η1β∗
T

µ

π

(
w2w4 + w4w5 + w3w4 + w3w7 + w2

4 + w4w5 + w3w6

)
,

and

b = v2w3 + η1v2w4 > 0,
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with v2, w2, w3, w4, w5, w6, and w7, being positive. Consequently, since the bifurcation coefficient
b > 0, it can be deduced from Theorem 4.1 in [30] that TB-only model (22) undergoes a backward
bifurcation if the backward bifurcation coefficient a > 0. This is so if,

ε1 >
(ω2 + ω3 + ω4 + ω5 + ω6 + ω7) (ω3 + η1ω4)

ω8 (ω3 + η1ω4)
.

Obviously, if ε1 = 0, then a < 0, and HIV and TB co-infection model (5) will not undergo backward
bifurcation at RC = 1.
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Abstract

The global COVID-19 pandemic disrupted various facets of societal functioning, with the education
sector facing unprecedented challenges. The sudden closure of schools and universities, coupled with
the shift towards remote learning, created a dynamic educational environment. It significantly affected
academic performance, psychological health, dropout rates, school closures, and even increased early
marriage rates in Bangladesh. In 2021, the dropout rate stood at 14.15 percent. This study delves into the
specific repercussions of the pandemic on the education landscape in Bangladesh. The research reveals
the disparities in access to online education, shedding light on the socio-economic factors influencing
digital learning engagement. Through a comprehensive analysis of quantitative and qualitative data,
we explore the multifaceted effects on educational institutions, students, and educators. We present
the impact of COVID-19 on education graphically using interpolation polynomials. Mitigating the
impact of COVID-19 on the education sector in Bangladesh necessitates a multifaceted approach that
addresses various interconnected challenges. Moreover, prioritizing mental health support for students,
teachers, and parents is paramount in navigating the emotional toll of the pandemic. Collaboration and
partnerships with international organizations, non-government organizations (NGOs), and private
sector entities are indispensable for mobilizing resources and expertise. Bangladesh can effectively
manage the pandemic’s complications and ensure the continued viability of its educational system by
implementing such an all-encompassing approach.
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1 Introduction

Every few hundred years or so, something happens on the planet that permanently alters the way
things have been for humanity up until that point. In late December 2019, a novel infectious disease,
COVID-19, emerged in the human population. This disease, caused by a previously unidentified
coronavirus, was first detected in the city of Wuhan, located in China’s Hubei province [1]. By
January 2020’s end, it was officially designated as a global public health emergency. Subsequently,
on March 11, 2020, the World Health Organization classified it as a pandemic [2, 3]. Bangladesh
announced its first three confirmed coronavirus cases in the country on 8 March 2020. Institute of
Epidemiology, Disease Control, and Research (IEDCR) Director Meerjady Sabrina Flora said at
a press conference in Dhaka that two men and a woman tested positive for the coronavirus and
that the three were admitted to a hospital [4–6]. As a result of the COVID-19 pandemic, numerous
nations and regions worldwide have implemented several non-pharmaceutical precautions known
as lockdowns [7]. By April 2020, approximately half of the global population was subjected to
different degrees of lockdowns. More than 3.9 billion people were instructed or required to stay at
home by governments in more than 90 countries and territories [8–10]. Semlali et al. developed
a new delayed SIR epidemic model to examine COVID-19’s behavior, considering immigration,
vaccination, and general incidence. They found that vaccination reduces confirmed cases, but
the disease persists due to the immigration of infected people. They recommended controlling
the immigration of infected individuals or eradicating the disease in all regions to eliminate
infection [11]. The mathematical model can be used to describe the dynamics of RNA viruses such
as SARS-CoV-2 within the human body. This model relies on two key threshold parameters to
define its dynamics: the basic reproduction number and the reproduction number for humoral
immunity. These parameters are crucial for identifying biologically plausible equilibria within the
SARS-CoV-2 infection model [12].
Among many other sectors of day-to-day life, the lockdown took a great toll on our education
sector, as educational institutions remained closed for a longer period. The government of
Bangladesh announced the first all educational institutions closure from 17 March 2020 to 31st
March 2020 and enhanced the closure many times in an attempt to reduce the spread of COVID-19.
This closure of educational institutions continued on and off till the first half of 2022. The pandemic
has affected all facets of life globally for people, and the education system is experiencing its worst
crisis in a century. Such as permanently closed schools, dropouts, staff shortages, unemployment
of teachers, etc. Furthermore, students and educators continue to struggle with mental health
challenges, high rates of violence and misbehavior, and concerns about lost instructional time.
Due to the COVID-19 pandemic, about 38 million students were affected when schools closed
on March 17, 2020, and they remained closed for a long time. But the government acted fast to
keep learning going. They used TV and the internet to teach students with pre-recorded classes
starting in April 2020. The Ministry of Primary and Mass Education set up teams to make learning
materials and share them on TV, phones, radio, and the internet [13].
Like other countries, Bangladesh has experienced educational challenges as a consequence of the
COVID-19 pandemic. Public and private universities have struggled to keep up with teaching
and learning because of this. Numerous inquiries have been conducted to address the challenges
encountered by universities and to examine their responses. General and engineering university
students experienced difficulties including insufficient equipment, stress, and financial difficulties
[14]. COVID-19 compelled educational institutions worldwide to switch from in-person to virtual
teaching. This change posed a threat to humanity as a whole, requiring everyone in the education
sector to modify and adapt their usual practices. Hosen et al. surveyed to explore the impact
of COVID-19 on tertiary educational institutions and students in Bangladesh. Their analysis
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showed that 60% of respondents didn’t have separate reading rooms, and 21% didn’t have
personal electronic gadgets for online classes. Also, 55% reported spending less time studying
during the pandemic. Moreover, 88% of respondents faced mental health-related stress, anxiety,
and depression issues. To lessen the impact of COVID-19 on the education sector, authorities
must prioritize underprivileged students. This can be achieved by providing interest-free loans,
ensuring access to high-speed internet, and organizing online webinars designed to alleviate the
mental stress experienced by both students and staff [15].
In addressing the challenges posed by the COVID-19 pandemic in the education sector of an
emerging economy like Bangladesh, it is important to adopt flexible strategies. The opening
and closure of educational institutions can give rise to various risks, encompassing economic,
health, social, mental, and behavioral changes for students. To assist students in overcoming these
challenges and attaining Sustainable Development Goals (SDGs), it is imperative to embrace and
develop innovative techniques for navigating the evolving and dynamic educational landscape
[16]. A qualitative study was conducted using thematic analysis to investigate the impact of
COVID-19 on tertiary education in Bangladesh from the student’s perspective. The study focused
on themes including university closure, disruptions in learning, loss of social interaction, physical
health problems, mental health problems, shifting to online education, and financial crisis and
parental involvement. Findings underscored that transitioning to online education for tertiary
studies induced stress, anxiety, and disappointment due to various challenges associated with
virtual learning strategies [17].
With a particular focus on Moroccan high schools, the study investigated how mathematical biol-
ogy might be incorporated into the teaching of mathematics in high school. Emphasis was placed
on the significance of mathematical modeling in recent advancements in epidemiology. The goal
was to evaluate the extent to which mathematical applications in biology are incorporated into the
high school mathematics curriculum. After examining two bachelor textbooks used in the second
year, it was determined that the Moroccan mathematics curriculum is not sufficiently accessible to
experimental sciences, especially ignoring biology, as demonstrated by the lesson on differential
equations. There is a need to shape students’ perspectives on mathematics, mathematical biology
and enhance their competencies [18].
Some research highlighted the positive outcomes of the COVID-19 pandemic, contrasting the
prevailing focus on its negative impacts. Researchers collected data via online Focus Group
Discussions (FGD) conducted from April 2021 to June 2021, involving final-year undergraduate
students from the Sylhet division of Bangladesh. During this period, people spent valuable time
with their families, pursued personal interests, acquired new skills, and gained a heightened
awareness of sanitation, hygiene, and social distancing. Reduced energy use and greenhouse gas
emissions improved the environment and helped to preserve ecosystems [19].
We can get more knowledge about education reform in the areas of equity, access, and inclusion;
curriculum and assessment; teacher preparation; and higher education. Together, these researches
offer a comprehensive view of Bangladesh’s educational past, present, and future, including
comparisons to other developing nations [20]. With over 100 million cases and 2 million recorded
fatalities worldwide, the new coronavirus (COVID-19) pandemic has had a terrible effect on hu-
manity. The educational, economic, medical, and public health infrastructure of China as well as
other countries, particularly the neighbors, has been put to the test by this unique virus outbreak.
How the virus will affect our life here in Bangladesh will only become clear with time [21, 22].
The coronavirus disease pandemic, as well as the methods taken to stop the virus’s spread, have
hurt education. These actions included closing schools, which significantly disrupted the lives of
children. Long-term school closures will have an impact on the skills that kids can learn during
their formative years, as well as on their work prospects and earning potential for many years after
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school ends. Due to school closures caused by the epidemic, more than 1.5 billion kids and young
people worldwide have been impacted, with major earning and learning losses being widespread
in all economies indexed by United Nations Educational, Scientific and Cultural Organization
[UNESCO 2021a] [23].

The study included the following objectives and their alignment:

• The aim is to analyze the educational system in Bangladesh in contrast to global standards and
delineate their structural disparities.

• The repercussions of extended school closures and strategies to mitigate their effects in educa-
tional institutions.

• The impact of learning loss on student mental health and well-being.
• An examination of early marriage among female students resulting from school dropouts and

measures for its prevention.
• Examining how polynomial interpolation techniques interact with the available data.

This article is organized as follows: a general structure of Bangladesh’s education system is
presented in Section 2. The long-term impacts of COVID-19 on education sectors are discussed
in Section 3. Section 4 explores COVID-19’s effect on the education system in Bangladesh by
using polynomial interpolation. Section 5 of the study covers potential strategies for reducing
COVID-19’s effects on the education sector. Finally, a fruitful conclusion is included in Section 6.

2 Educational structure of Bangladesh

Education in the twenty-first century is truly a worldwide phenomenon. Getting a good education
is seen as both a right and a responsibility in most countries today. The future of a country
depends on the products of its current educational systems. Every country in the world has some
kind of educational system in place, although these systems differ widely. The primary factors
influencing educational systems are the financial and material means available to support them in
various countries. Education policies, including a country’s cultural attitudes toward education,
the amount of time and resources allocated to it, and how it is distributed throughout the country
also contribute to these variations.

Education in Bangladesh is heavily subsidized and is overseen by the Ministry of Education
(MOE) [24]. The foundation of the educational system in Bangladesh was laid long ago. Over
the last decade, Bangladesh has made notable progress in expanding access to education. The
government of Bangladesh has made it a priority to ensure that all citizens, regardless of their
background or gender, have access to quality education, and as such, they have implemented
several programs, and initiatives aimed at doing just that. Apart from having some drawbacks,
the educational system has only progressed over time.

General education, madrasah education, English medium education, and technical-vocational
education are the four main educational tracks in Bangladesh. Bangladeshi Educational structure
has three main levels: primary level, secondary level, and tertiary level. As of 2022, the total
literacy rate of Bangladesh is 74.66 percent [25], where the Female and Male students’ literacy is
presented in Figure 1.
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Male 76.56 percent

Female 72.82 percent

Figure 1. Female and male students distribution

In the national budget of 2017-18, a total amount of Tk 50,432 crore was allocated in the budget for
education, which was groomed and boosted up to improve the education and human resources
[26]. The budget distribution for three different sectors in 2017-2018 is depicted in the map
referenced as Figure 2.

42%

23%

35%

Primary
Secondary
Tertiary

Figure 2. The educational national budget for different education sub-sectors in the fiscal year 2017-18

Primary education

Primary education is the ground floor of formal schooling. It usually marks the beginning of the
educational process, coming after preschool or kindergarten and before secondary school. The
Ministry of Primary and Mass Education holds the responsibility of implementing primary educa-
tion programs and government-funded schools at the grassroots level [27]. Primary education is
free. Children between the ages of 6 and 11 are served by elementary education, which lasts five
years (from grades I through V). Its primary goal is to develop children’s literacy and numeracy
abilities, which include speaking, listening, reading, and computational abilities. It also aims
to build additional competencies and understanding that equip young people for meaningful
engagement in society [28].
Based on the Primary Education Census of 2018, there were 20.8 million students enrolled in
pre-primary through grade five across all types of primary schools [29–31]. Here, a simple list
is given in Table 1 which shows the list of primary schools in Bangladesh, the total number of
students and female students, the total number of teachers, and female teachers in the primary
sector [32].
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Table 1. The number of students and teachers in different types of schools in Bangladesh

School type Students (total) Students (female) Teachers (total) Female

Government School 14671914 7530261 319112 191830
Experimental School 10652 5250 282 246
Ebtadaee Madrasah 372277 181341 11673 2300

Kindergarten 1988365 914016 93799 54813
*NGO School 210170 107898 5454 3764

Community School 16747 8679 405 322
Attached to High Madrasah 871047 427341 19764 2812

Primary Sections of High School 572751 295659 8301 4450
*BRAC 324438 185873 7798 7277

*ROSC School 106884 53751 3591 2867
Sishu Kollyan Primary 15665 8284 410 277

Others School 97519 48808 4875 2967

Grand total 19,258,429 9,767,161 475,464 274,143

*NGO School stands for Non-government Organization School; BRAC represents Bangladesh
Rehabilitation Assistance Committee; and ROSC stands for Reaching Out of School Children.

Secondary education

Secondary education is managed and administered by the Ministry of Education (MOE) which
is charged with policy formation, planning, monitoring, evaluation, and execution of plans and
programs. At present, secondary education consists of three sub-stages such as:

• Lower secondary (grade 6 to 8).
• Junior secondary (grade 9 to 10).
• Higher secondary (grade 11 to 12).

The goals of secondary education in Bangladesh were established following the suggestions
outlined by the Bangladesh Education Commission of 1974, the National Curriculum and Syllabus
Committee of 1975, and the National Curriculum and Coordination Committee of 1993. Its
primary purpose was to facilitate learners in acquiring new knowledge and competencies, utilize
the possibilities of contemporary science and technology, foster a constructive perspective and
scientific mindset, equip them with self-employment abilities, and instill a sense of patriotism
alongside religious, ethical, cultural, and societal values [33]. At this level, each student must
attain two public examinations named Secondary School Certificate (SSC) and Higher Secondary
Certificate (HSC) under the supervision of nine Boards of Intermediate and Secondary Education.
They are Dhaka, Chottogram, Barishal, Comilla, Dinajpur, Jashore, Mymensingh, Rajshahi, and
Sylhet Education Board. Every high school has a particular education board. The number of
high schools for every educational board is listed in Table 2 [34]. In 2021, the total enrolment of
students in secondary level was 10.19 million, and the total teachers were 266568. In 2021, the
Teacher-Student Ratio (TSR) was 1:38, and the average number of teachers per institution was
only 13.

Higher secondary education

The Higher Secondary Education (HSE) serves an essential purpose as a connection point between
secondary and tertiary education in Bangladesh. Grades 11 and 12 make up Bangladesh’s system
of higher secondary education. At this level, most students choose a stream of education (e.g.
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Table 2. Education Boards and their corresponding number of High Schools

Education Boards Number of High Schools

Dhaka 3549
Rajshahi 4607
Comilla 1483
Jeshore 2274

Chottogram 248
Barishal 1396
Sylhet 645

pre-engineering, pre-medicine, business management, or arts/humanities) that will serve as the
cornerstone of their career throughout their lives.
The rates of HSE enrollment and completion have significantly increased recently, and there has
been some improvement in the gender equity of HSE enrollment. Data reveal there are significant
enrollment gaps between urban and rural colleges, which makes it difficult to advance socioe-
conomic development and equity. Although there has been a notable progression in achieving
gender equality in HSE enrollment, there exists a significant task of enhancing and sustaining
female participation. Data highlights substantial disparities between urban and rural enrollment.
According to research outcomes, enrolment in HSE has significantly increased, necessitating
improvements in many areas within this sector [35].

Figure 3. Enrollment ratio comparison between boys and girls [36]

According to BANBEIS 2021 data [36], the net enrollment ratio (NER) for male students at the HSE
level could never beat the NER of female students in the last decade from Figure 3. This pattern
can be linked to heightened parental awareness of the significance of enrolling girls in higher
education and attaining an HSE diploma. Moreover, over the past five years, the Bangladesh
government has amplified the stipend/scholarship initiative to expand greater participation of
girls in higher education. The Bangladesh government has implemented specific policies to
address the challenges of the 21st century in various sectors, including education. Some of these
policies include:
National Education Policy: The government has formulated and implemented a National Educa-
tion Policy aimed at modernizing and improving the quality of education in Bangladesh. This
policy focuses on enhancing access to education, improving the quality of teaching and learning,
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and promoting lifelong learning opportunities for all citizens.
Digital Bangladesh Initiative: The government has launched the Digital Bangladesh initiative to
promote the use of information and communication technology (ICT) in education. This initiative
includes programs to provide digital literacy training to students and teachers, promote e-learning
platforms, and integrate ICT into the curriculum.
Science, Technology, Engineering, and Mathematics (STEM) Education: Recognizing the impor-
tance of STEM education in the 21st century, the government has prioritized initiatives to promote
STEM education in schools and colleges. This includes the establishment of STEM-focused schools
and the introduction of STEM-related curriculum and extracurricular activities.

3 Cumulative impact of COVID-19 on education

Learning loss

The phrase "learning loss" is frequently used in the literature to characterize declines in student
knowledge and skills. Learning loss describes the deterioration or regression of students’ academic
knowledge and skills over extended periods of interrupted or inadequate learning opportunities.
Historical data, which is frequently obtained through regular testing, gives academics insight into
where student learning should be on an annual basis. When educational advancement is not made
at the same rate that it has historically compared to previous years, learning loss occurs.
COVID-19 has disrupted the education of an entire generation of children. The pandemic has
caused one of the lengthiest school closures worldwide, affecting the education of 37 million
children in Bangladesh [37]. At the height of school closures, globally 168 million children
were out of school. Furthermore, around 214 million children, or 1 in 7 have missed more than
three-quarters of their in-person learning [38].
The impact of school closures was particularly challenging for all children, with girls and children
from underprivileged homes suffering the greatest difficulties. They experienced noticeable
learning setbacks and confronted intensified risk of dropping out of their education. Before the
pandemic, as early as 2017, more than half of Bangladeshi children who completed primary
school struggled to read and comprehend basic texts. Current simulations indicate that due to the
extended school closures, a staggering seventy-six percent of children will likely not achieve the
essential reading proficiency level by the end of primary school. While some countries managed
to limit the losses, the actual impact of COVID-19 on learning progress shows that school closures
frequently have a large, persistent, and unequal effect on learning. Online education is not a good
enough substitute for in-person learning, particularly for children from low-income families. An
examination of 35 rigorous studies from 20 countries reveals three key issues:

i. The majority of studies (32) discover evidence of learning loss. 27 of the 35 studies that
reported learning loss findings did so in a format with a similar effect size. In most research,
learning losses were reported to range between 0.25 and 0.12 standard deviations (SDs). Losses
in learning were even higher in five studies. The average amount of learning lost across all
studies is 0.17 standard deviations or more than half a school year.
ii. The studies consistently find different levels of learning loss by student socioeconomic status,
past academic learning, and the subject of knowledge. By socioeconomic position, learning loss
was studied in 20 research. 15 of them demonstrate a statistically significant difference between
children or schools with lower socioeconomic levels and greater learning loss, whereas 5 do
not. Numerous studies have also revealed that pupils who had academic difficulties before the
epidemic suffer more from learning loss. In the studies that used this measure, 11 showed that
students with lower levels of academic achievement experienced larger learning losses, while 3
showed that students with higher levels of prior academic achievement experienced greater
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learning losses.
iii. Learning losses increased in proportion to the length of school closures. The average length

of school closures for the 19 nations for which we have reliable learning loss data was 15 weeks,
resulting in an average learning loss of 0.18 standard deviations. In other words, learning
decreased on average by 1.2 points, or 0.01 standard deviations, for each week that schools were
closed. These nations show compelling evidence that the pandemic-induced school closures
were responsible for learning deficits. Average learning losses in these European nations were
0.16 standard deviations, and average school closures lasted 11 weeks on average. As a result,
learning losses were roughly 1.5 points, or 0.015 standard deviations, per month, for each week
that schools were closed.

Here, results presented in months of loss are converted to standard deviations, with 1 school year
of learning equal to 0.33 standard deviations [39].

Figure 4. Range of learning loss (in SDs) in the 27 studies reporting comparable effect sizes

In Figure 4, learning equal to 0.33 standard deviations. Negative SDs represent learning loss.
According to Figure 4, most studies indicate a loss of approximately one academic year in learning.
However, one study showed 1.5 school years of learning loss. In 2020, the Bangladeshi government
decided to cancel one of the nation’s significant public examinations due to concerns related to
the COVID-19 pandemic. The Ministry of Education declared that approximately 1.4 million
candidates who were supposed to appear for the HSC and equivalent examinations that year
would instead be assessed based on their performance in two of their preceding public exams,
namely the JSC (Junior School Certificate) and SSC. As a result, all candidates were granted an
’Auto-pass’ [40]. Furthermore, various countries postponed their major public exams due to rising
cases of COVID-19.

The crisis-induced learning deficits will exploit a substantial economic cost. According to the
World Bank’s estimations, today’s generation of school children could face a lifetime earnings
reduction of USD 17 trillion in current value. This amount equates to approximately 14 percent of
the existing global Gross Domestic Product (GDP) [41].
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Effect on student’s mental health

Since the start of the COVID-19 pandemic in early 2020, school closures have affected the education
of around 37 million children in Bangladesh and approximately 800 million children worldwide
including Asia, encompassing South Asia, Southeast Asia, and East Asia [42]. In Bangladesh,
schools were closed throughout the entire pandemic until 12 September 2021, when they reopened
again after an 18-month closure. A whole generation’s future is on the line. The pandemic has
provided parents, teachers, and kids with several difficulties. We are just now beginning to
understand the far-reaching effects of school closures, isolation policies, and other abrupt changes
on students. The COVID-19 pandemic has had a significant impact on student mental health, and
several quotes shed light on the situation. From a student: "I miss going to school every day and
seeing my friends. Learning from home is challenging because I don’t have access to a computer
or internet connection. Sometimes, I feel like I’m falling behind in my studies" and from another
educator: "It’s heartbreaking to see how the pandemic has disrupted the education of so many
students. We’re doing our best to provide support and resources to help them continue learning,
but it’s challenging without the structure of regular school days."
COVID-19 has significantly affected primary school students and children. The effects on children
of the disruption of educational services cannot be disregarded. Children lose the largest chance
to learn and grow to their full potential when schools are closed. Children who already deal with
mental health issues have been particularly susceptible to the changes. When school restarts, some
depressed children may have a difficult time returning to their regular routines. Approximately
29% of parents report that their children are presently grappling with emotional or mental health
challenges due to the effects of social distancing and closures. An additional 14% of parents
suggest that their children can endure a few more weeks of social distancing before their mental
health begins to deteriorate [43].
The consequences on high school students or teenagers as a result of the COVID-19 pandemic
are notable. The year 2020 proved challenging for everyone, but it had an especially significant
effect on the mental well-being of teenagers and young adults. A recent study involving 5,400
participants reported that 25% of individuals aged 18 to 24 had thoughts of doing suicide in the
preceding 30 days. Moreover, a recent survey revealed that 80% of students faced adverse effects
on their mental health as a result of the pandemic, with 20% indicating a substantial deterioration
in their mental well-being [44].
The impact on college students is evident due to COVID-19. 20% of college students say their
mental health has significantly worsened under COVID-19. 48% have experienced financial
setbacks due to COVID-19. Among all students, 38% said having trouble focusing on their studies.
74% are challenged in maintaining a routine [45]. A data table of the impact on mental health due
to COVID-19 is listed in Table 3 according to types of mental problems [45].

Table 3. Impacts of COVID-19 on students’ mental health [45]

Type All students College students High school students

Stress or anxiety 87% 91% 74%
Disappointment or sadness 78% 80% 74%

Loneliness or isolation 42% 48% 26%
Financial setback 42% 48% 26%

Relocation 39% 56% 2%
Illness (myself or loved one) 7% 5% 9%

Loss of a loved one 4% 3% 5%
None of the above 4% 2% 8%
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COVID-19’s influence on university students is discernible. There has been an upswing in concern
about the mental health of undergrads in recent years. Since COVID-19, the educational landscape
in Bangladesh has undergone significant change. All university campuses were closed during
the pandemic. There was a problem with the student’s mental health. University students are
now more likely to have mental health problems due to the pandemic’s stressors and constraints,
which could seriously harm their academic performance, social connections, and future careers.
University students indicated normal levels of depression 30.41%, anxiety 43.29%, and stress
47.40% during COVID-19 [46]. Many of them committed suicide due to mental issues. Male
students reported lower levels of anxiety and stress compared to female students. Furthermore,
students living in the urban area of Dhaka displayed higher levels of depression and anxiety
in comparison to students residing outside the city [46]. Table 4 displays the frequencies and
percentages of depression, anxiety, and stress labels among university students in Bangladesh
[46].

Table 4. Labels indicating depression, anxiety, and stress levels among university students in Bangladesh [46]

Rating Depression (n%) Anxiety (n%) Stress (n%)

Normal 111 (30.41) 158 (43.29) 173 (47.40)
Mild 53 (14.52) 25 (6.85) 43 (11.78)

Moderate 84 (23.01) 82 (22.47) 54 (14.79)
Severe 33 (9.04) 25 (6.85) 49 (13.42)

Extremely Severe 84 (23.01) 75 (20.55) 46 (12.60)

Consequently, there was a discernible escalation in mental health distress when students indicated
the experience of COVID-19-related symptoms. For instance, in cases where individuals reported
experiencing one or more symptoms, the risk of stress elevated by a factor of 1.60, while the
presence of at least one symptom amplified this risk to 3.06 times. Similarly, anxiety’s risk factor
increased to 3.02 times with the presence of one or more symptoms and further to 4.96 times with
at least one symptom [47]. Moreover, a different research investigation revealed that undergoing
symptoms such as fever, dry cough, fatigue, sore throat, and difficulty breathing played a pivotal
role in the emergence of mental diseases.

The concern about contracting COVID-19 emerged as a noteworthy indicator of depression, anxiety,
and stress in multiple studies. Likewise, incidents, where family members or friends had been
affected by COVID-19, were also associated with heightened levels of anxiety. According to a study,
students who expressed high levels of anxiety about coming into contact with individuals infected
with COVID-19 faced 3.5 and 2.75 times greater risks of experiencing anxiety and depression
compared to those who had no or minimal contact. Likewise, students who had been in contact
with confirmed COVID-19 cases were found to be at 4 and 3.17 times higher risk of experiencing
stress and anxiety, respectively [47].

The duration of internet browsing has been considered a predictive element for psychological
disorders in one study. According to this study, students who spent 5 to 6 hours or more than
6 hours browsing the internet were at a high risk of experiencing psychological problems, in
contrast to those who spent less than 2 hours. Furthermore, experiencing sleep difficulties was
also associated with an elevated risk of mental health issues. Another study asserted that students
who reported dissatisfaction with their sleep patterns experienced higher levels of psychological
distress compared to those who were satisfied with their sleep quality. The habit of smoking was
reported as a significant factor in evaluating mental health problems. The students who were
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engaged in smoking were more prone to psychological suffering [47].

Economical impact of COVID-19 related school closures

The economic impact of school closures in Bangladesh can be significant and multifaceted, affecting
individuals, teachers, and students in various ways: loss of income, increased household expenses,
reduced productivity, professional challenges, disrupted education and emotional impact. All
these issues somehow connected with the individuals, teachers, and students.
Education helps people to be more effective at their jobs, especially in today’s knowledge-based
industries. Education also gives people the information and abilities they need to create and use
novel ideas and breakthroughs that advance technology and boost the nation’s economy com-
pletely. The coronavirus disease (COVID-19) and related school closures substantially disrupted
children’s education. Long-term school closures will affect the students’ learning and potential
professional productivity. The COVID-19 pandemic has seriously disrupted educational systems
around the world. According to UNESCO (2021b), a total of 210 economies have experienced
either full or partial school closures, with 84 of them enduring closures lasting over 40 weeks,
equivalent to a full school year. Due to prolonged school closures during COVID-19, Bangladesh
has endured substantial declines in gross domestic product (GDP) and employment [23].
Especially in developing economies, where students frequently suffer from reliable access to
high-speed internet connectivity, online education might not yield the same effectiveness as
traditional in-person teaching and learning. While online learning can lessen the effects of an
interrupted school year, its success depends on the accessibility of learning resources and their
effectiveness in promoting learning. To address the learning deficit, one frequently proposed
solution is online education. However, the transition to online learning is not currently a feasible
solution for Bangladesh. Approximately 5 percent of households lack access to a mobile phone,
and when it comes to computers/tablets, only 5.60 percent of households possess one. However,
merely owning a computer/tablet is insufficient. With only 37.60 percent of households having
internet connectivity at home (with urban areas at 53.10 percent and rural areas at 33.20 percent),
the feasibility of this option appears dimmer. Additionally, clear regional and income disparities
are evident: rural and economically disadvantaged regions have significantly less access to
Information and Communications Technology (ICT) compared to urban and wealthier areas. This
inequality extends to poorer households as well. Based on the most recent Household Income
and Expenditure Survey (HIES) data, updated to 2020, it can be estimated that approximately
12.70 percent of impoverished households lack access to even a single mobile phone [48]. The
poorest and second lowest percentiles of wealth have faced the hardest hit in economies with
a noticeable presence of students from rural areas. The primary causes of this are the lack of
dependable internet connections and the difficulties associated with online learning, which hurt
these students’ chances of obtaining a degree. Furthermore, economies with a high percentage of
unskilled laborers within the workforce also experience significant limitations in terms of both
learning and earning potential. For this reason, the closure of schools leads a significant portion of
the affected students towards opportunities in unskilled employment.
The closure of schools has generated an impact on labor productivity as well. Since the start
of the pandemic, there has been a significant decrease in the participation of women in the
workforce, particularly among working mothers who have had to care for their children. The
increased dependency on virtual learning due to school closures has arisen in a situation where
women having young children have chosen to step back from their jobs. While the eventual
return to traditional in-person schooling could potentially boost labor force participation rates, the
possibility of this outcome remains uncertain. This uncertainty is especially relevant in developing
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economies, where many kids have not received vaccinations. When a considerable proportion
of the working force is employed in unskilled labor, both learning and earning are significantly
impacted. Forecasts for Bangladesh indicate that skilled employment may experience a decline of
3.18 percent, and unskilled labor employment may see a decline of 3.16 percent by the year 2030.
Regarding the magnitude of the change, Bangladesh is projected to encounter a notable decline in
GDP in South Asia, following India, with an estimated decrease of approximately $13.84 billion
by 2030. Meanwhile, India is anticipated to undergo the most substantial GDP decline in South
Asia, with a projected decrease of about $98.84 billion by 2030. Moreover, the country’s skilled
employment is expected to decrease by 0.244 percent in 2023 and further by 0.759 percent in 2025
[49].
According to the report, school closures cause a decline in the global GDP and employment possi-
bilities. The research titled "Potential Economic Impact of COVID-19-Related School Closures,"
done by the Asian Development Bank (ADB), reports that the GDP has shrunk by 3.1 percent
as compared to the baseline scenario without COVID-19 because of the lost revenue from these
closures. This reduction amounts to a global decline in GDP of 0.19 percent in 2024, 0.64 percent
in 2028, and 1.11 percent in 2030. By the year 2030, it is estimated that the world economy will
have lost 943 billion dollars due to school closures caused by the COVID-19 epidemic [49].
Due to financial hardships brought on by pandemic control measures, the COVID-19 pandemic
may have a more significant effect on schooling. The South Asian Network on Economic Modeling
(SANEM) used the latest Household Income Expenditure Survey (HIES) to calculate that, before
the crisis, 8.4 million students’ families (23.90 percent) lived in poverty. With a prolonged crisis
and a three-month lockdown starting from March 25, 2020, causing a 25.0 percent drop in yearly
per capita income, SANEM predicts that the number of student families below the poverty line
could increase to 43.90 percent. This implies that an additional 7.70 million student families could
fall into poverty during this crisis, bringing the total to 16 million students living in the poverty
line [48].

Figure 5. Students’ families below the poverty line

In Figure 5, the horizontal axis shows the educational levels, and the vertical axis shows the
percentage of children whose families earned less than the poverty line in COVID-19. The
percentage is high at the primary school level and low at the university level. The primary
students are unable to work and be paid. Thus, their livelihood is only managed by the guardians.
Nevertheless, university students can work and support their families.
Many teachers lost their employment after the closure of the schools. Some departed because
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they were stressed and struggled with technology, while others lost jobs due to insufficient money.
Even after two years of closures, most teachers in the study still didn’t have jobs, demonstrating
the uncertain nature of the teaching job market.

Influence on early marriage

Amidst the COVID-19 pandemic, the incidence of child marriage in Bangladesh has seen a
disturbing increase, predominantly due to girls spending more time at home as a result of the
closure of educational institutions. It’s worth noting that Bangladesh holds the unfortunate
distinction of having the fourth highest prevalence of child marriage globally [50]. The pandemic
has further exacerbated this critical situation for countless girls. Bangladesh ranks among the top
10 countries in terms of child marriage rates [51].

Disturbingly, over 50% of Bangladeshi women currently in their mid-20s were wed before their
18th birthday, and nearly 18% were married off before the age of 15 [50]. Moreover, the rate of
child marriages has surged by up to 220% during the July-September period amid the ongoing
pandemic [51]. Even before the COVID-19 outbreak, approximately 100 million girls remained
at risk of child marriage over the next decade, despite notable reductions in several countries in
recent years [52].

According to a Financial Express report, a girl had eight friends in a village school prior to the
outbreak. When the school resumed on September 12, she was alone in her class. She waited for
her friends for a few days, but they didn’t come back. It turns out that all her friends got married
while the school was closed. This violates the laws against child marriage. Many newspapers have
written about numerous instances during the pandemic where people violated this guideline [53].
Girls’ general well-being, education, and health are severely harmed by child marriage. Beyond the
immediate physical risks associated with early pregnancies, such unions often curtail educational
opportunities, perpetuating cycles of poverty and reinforcing gender disparities. Moreover, the
psychological toll of forced marriages can lead to anxiety, depression, and trauma, hindering girls’
mental well-being and long-term prospects. To break this cycle of harm, concerted efforts are
needed to promote gender equality, protect girls’ rights, and provide comprehensive support to
those affected by child marriage.

Case study of dropouts

The most severely affected of all educational institutions were the kindergartens. During the
pandemic, thousands of kindergartens have shuttered, and unfortunately, the majority of them are
unlikely to resume business. Teachers of these kindergartens have been forced to take menial or
odd jobs to survive during the pandemic. Inquiries into household intentions regarding the return
of their children, who were attending school before the government-imposed closures in March
2020, reveal that over 13% of current enrollees are considering discontinuing their education.
Additionally, approximately two-thirds of these potential dropouts have no intentions of resuming
their education after leaving. This trend of dropping out is prevalent across various grade levels.
It’s worth noting that male students exhibit a slightly higher likelihood of discontinuing their
education (14%) compared to female students (13%). Furthermore, among students residing in
slum areas, a significant 17% are contemplating dropping out. In contrast, in August 2020, only
less than 1% of the students planned to drop out [54]. From the BANBEIS data [36], a comparison
of the dropout rates in the primary level for the last six years is shown in Figure 6.
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Figure 6. Primary-level student dropout rates, 2017-2022

From the BANBEIS data [36], a comparison of the dropout rates in the secondary level for the last
six years is mapped in Figure 7.
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Figure 7. Secondary-level student dropout rates, 2017-2022

Due to the inability to commence their college sessions, students are grappling with concerns
about the potential truncation of their academic year. Consequently, many students are forced to
juggle multiple unstable jobs such as construction work, garment sector employment, bus driving,
auto-rickshaw driving, and so on. This has led to a regrettable situation where numerous students
have dropped out of school, leaving them unprepared for the HSC examination.
Throughout 2022, plenty of factors combined to elevate the dropout rates among girls in higher
secondary schools. Economic hardships exacerbated by the COVID-19 pandemic, unequal access
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to technology for remote learning, societal pressures forcing girls to shoulder domestic duties,
increased risks of early marriage and pregnancy, and elevated mental health challenges all con-
verged to hinder girls’ educational aspirations. These hurdles underscore the critical necessity for
focused interventions aimed at improving females’ educational achievements and eliminating
long-standing institutional disparities.
In particular, a comparison between boys’ and girls’ dropout rates in the higher secondary level
for the same time interval is displayed in Figure 8.
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Figure 8. Higher secondary-level dropout rate comparison: Boys vs Girls

Bangladesh’s dropout rate is declining as a result of the government consistently strengthening
the educational system. Due to the start of COVID-19 in 2020, students were admitted to schools
and colleges early. Thus, the dropout rate does not increase. Dropout rates decreased in 2021 due
to auto passes, online courses, etc. However, in 2022, all families experience financial hardship,
girls get married, and males begin working to support the family, which causes a small increase
in dropout rates. Since girls got married, the dropout rate for females from second to higher
secondary schools is particularly high in 2022. They are unable to enroll in college anymore.

4 COVID-19’s impact on education with polynomial interpolation

With the help of polynomial interpolation, we plot the number of students who took the Secondary
School Certificate (SSC) and Higher Secondary Certificate (HSC) exams in the relevant years to
demonstrate the impact of COVID-19 on Bangladesh’s educational system. For SSC students:

Year (x) 2018 2019 2020 2021 2022
Students (y) 20,31,899 16,94,652 20,40,28 22,27,113 20,21,006

For calculation, we convert the above data into the Table 5.

Table 5. SSC students participated in Final Exams in 2018-2022

x 18 19 20 21 22
y 2.031899 1.694652 2.040028 2.227113 2.021006
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The corresponding Lagrange interpolating polynomial for SSC students is

p1(x) = 2.031899
(x − 19)(x − 20)(x − 21)(x − 22)

24
+ 1.694652

(x − 18)(x − 20)(x − 21)(x − 22)
−6

+ 2.040028
(x − 18)(x − 19)(x − 21)(x − 22)

4
+ 2.227113

(x − 18)(x − 19)(x − 20)(x − 22)
−6

+ 2.021006
(x − 18)(x − 19)(x − 20)(x − 21)

24
= 0.02525054166666664x4 − 2.109694583333329x3 + 65.87597895833312x2

− 9.110671099166661x + 4710.460643.

For HSC students:

Year (x) 2017 2018 2019 2020 2021
Students (y) 11,83,686 13,11,457 13,36,629 13,67,377 11,15,705

For simplicity, we convert the above data into the following list (Table 6).

Table 6. HSC students participated in Final Exams in 2018-2022

x 17 18 19 20 21
y 1.183686 1.311457 1.336629 1.367377 1.115705

The corresponding Lagrange interpolating polynomial for HSC students is

p2(x) = 1.183686
(x − 18)(x − 19)(x − 20)(x − 21)

24
+ 1.311457

(x − 17)(x − 19)(x − 20)(x − 21)
−6

+ 1.336629
(x − 17)(x − 18)(x − 20)(x − 21)

4
+ 1.367377

(x − 17)(x − 18)(x − 19)(x − 21)
−6

+ 1.115705
(x − 17)(x − 18)(x − 19)(x − 20)

24
= −0.01651129166666667x4 + 1.239881416666671x3 − 34.89048370833336x2

+ 436.0935415833342x − 2041.554638000004.

Now, plotting these polynomials, p1(x) and p2(x) using MATLAB, we get

Figure 9. Participants in SSC examination
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In Figure 9, participants in the SSC examination from the year 2018 to 2022 have been shown
graphically. The number of students that have taken in millions and years has been converted
from 2018 (equivalent to 18), 2019 (equivalently 19 in the plot), and likewise. Clearly, in the year
2022, the number of participants has dropped significantly.

Figure 10. Participants in HSC examination

The number of students taking the HSC exam each year from 2017 through 2021 is graphically
represented in Figure 10. The number of students is reported in millions and the years have been
converted from 2018 to 18, 2019 to 19. The year 2021 shows a dramatic decline in participation
from the previous years.
The devastating impact COVID-19 has had on education in Bangladesh is shown at a glance in
declining enrollment in the country’s two most important public exams, the Secondary School
Certificate (SSC) and Higher Secondary Certificate (HSC) tests. Many pupils dropped out of
school in 2020 as the onset of COVID distracted them. Long-term effects were visible in SSC 2022
and HSC 2021. Since they live in a third-world country, not all kids have access to the necessary
resources to continue their education. Those who were in Class 10, in college, or previously
registered for the HSC when COVID-19 began managed to keep studying, hence the number
of students taking the tests did not drop much. But many children who had been inspired to
continue their education by passing the JSC or JDC, SSC, or equivalent exams at the beginning of
COVID-19, couldn’t continue much after that and gave up on their plans to enroll in secondary
school or higher secondary school. This explains the dramatic swing in turnout for the SSC 2022
and the HSC 2021.

5 Mitigate the impacts of COVID-19 on education

It’s been two and a half years since COVID-19 was declared a global pandemic. The COVID-
19 virus was a catastrophic event that has changed the course of human history in numerous
ways. Major changes in people’s daily routines, places of employment, educational opportunities,
and access to medical treatment have resulted from the pandemic. The pandemic has inflicted
significant damage on the educational sector. To mitigate its devastating impact, unique and
innovative strategies were implemented during and after the crisis.

Minimization of the lost learning

After it became clear that there was no chance of schools reopening any time soon, educational
institutions all around the world started to shift their focus to online education. Even before the
onset of COVID-19, the field of educational technology had been experiencing substantial growth
and widespread adoption. Global tech investments in this sector had surged to $18.66 billion in
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2019, and the entire online education market was anticipated to reach a substantial $350 billion
by the year 2025 [55]. Learning online has been demonstrated to improve retention and reduce
time spent studying, suggesting that the changes brought about by the coronavirus may be here
to stay. In many nations, the widespread availability of television has led to the introduction of
television and even radio-based programs designed to motivate students to study. Regarding
Bangladesh, MoE, and MoPME launched remote learning programs via "Sangsad TV" and on their
web platforms: e-connect, Facebook, and YouTube to guarantee learning continuity during school
closures. The first TV-based broadcast under this initiative aired on March 29, 2020 [56]. Many
universities have reduced the length of their semester from six to four months to cope with the
lost time. While in the yearly system, it was reduced to eight months. Bangladesh’s government
administered its SSC and HSC examinations in 2021 and 2022 on a shortened curriculum to make
up for lost instructional time, and it plans to do the same in 2023.
For the government of Bangladesh to get pupils back into the classroom, the first thing they
did was begin the vaccination process for those students. A university vaccination program
was launched to vaccinate university students. On November 2, the campaign to vaccinate 12-
17 year old in school started. They had to register through their schools to be vaccinated [57].
Shortcomings of the measures taken:
The lack of access to technology and the internet is the main barrier to e-learning for pupils from
low-income families. So it was not a remedy for all students and contributed to inequality. Those
lucky enough to have access to online instruction eventually grew bored with it due to a lack of
stimulation and the isolation that came from not having regular one-on-one instruction. Examiners
were severely harmed due to the truncated public examination curriculum. They are deprived of
the opportunity to learn about the subject matter that was cut from the curriculum, even though it
is crucial to their future education.
Based on these findings, some interventions can be proposed aimed at preventing the long-term
effect of lost learning. One of the most cost-effective ways to boost academic performance and
learning recovery is through a school-wide high-dose, one-on-one tutoring program. Adapt
lessons to meet the requirements of individual students and place an emphasis on building
essential skills. Lengthening the school year, adding make-up days, and expanding instructional
blocks are all potential strategies for helping students to aid in their academic recovery. Develop a
schedule for keeping tabs on each student’s development. Persistent professional development
that emphasizes the individual needs of teachers in terms of both methodology and expertise.
Instead of arbitrarily removing topics from the public test curriculum, we must emphasize keeping
in place the most foundational topics to ensure that students are not left struggling in the future.
Since many universities have shortened their academic year, hybrid learning is a great way to
help students manage the added workload and yet finish the required coursework in a reasonable
amount of time, assuring that all students can participate in hybrid classes.
Hypothetical solutions are presented to show the window of opportunity available to educational
systems to recover learning loss. These methods may prove crucial in reversing the damage done
by the pandemic and preventing similar catastrophes in the future.

Mitigation of the negative impact on economy

To address the economic crisis, many low- to middle-income countries have employed various
solution methodologies to mitigate the economic challenges brought about by the COVID-19
pandemic. Governments have implemented measures such as cash transfers, tax relief, and
increased spending on infrastructure and social welfare programs to boost economic activity
and support affected individuals and businesses. Central banks have lowered interest rates,
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expanded liquidity support programs, and implemented quantitative easing to stabilize financial
markets and stimulate lending and investment. Middle-income countries have sought support
from international financial institutions, bilateral partners, and multilateral organizations to access
additional funding and technical expertise to address the economic fallout of the pandemic.
When the pandemic lasts a long time, spending less on education goes against what this field
needs. Insufficient spending in this field to lessen the effects of COVID-19 will have long-term
consequences. The lack of resources in the nation could cause education to be negatively impacted
by the epidemic than in other nations. If the government doesn’t step in with effective short-term
and long-term strategies, young people now might be less productive and earn less money in the
future. The country should make a plan of action to solve this. For example:
Ensuring that every student returns to their educational institutions. Prioritizing proactive
governmental measures, such as updating existing stipend programs, investigating opportunities
for "education loans", running communication campaigns, actively engaging with families in need,
etc. The government should establish an "Education Loan" program. If students’ families can
qualify for the ’Education loan’ then they won’t have to worry about money. So, there won’t be any
monetary barriers to pupils attending schools. Furthermore, we can employ several tactics aimed
at getting students back into the classroom. We could, for instance, broadcast TV commercials
intended to raise public consciousness. To raise awareness and get parents to take their kids back
to school, we can re-promote cartoons like the Meena cartoons, village theater productions, and
announcing campaigns. Investing in the education of its citizens strengthens the country as a
whole. Now, the country risks seeing a decline in its educated population if many children and
teenagers do not return to school or enroll in higher education. Workers with little education and
skills will be produced. The country’s gross domestic product will fall.
There is a pressing need for the government to boost its allocation for education in Bangladesh.
Currently, the country’s spending on education, both in terms of its proportion to GDP and as a
percentage of total tax revenue, ranks among the lowest globally. Regrettably, the allocation for
education as a portion of GDP has dwindled, dropping from 2.18 percent in the revised budget of
FY20 to a mere 2.09 percent in FY21 (Financial Year 2021) [48]. A budget to spend 2.5 percent of
GDP on education should be passed. Spending on education must account for a sizable amount
of our total budget. Reopening schools that have been forced to close or compensating those in
financial distress should both receive funding from this plan. Also, it’s important to allocate funds
to raise educators’ pay. Take action to re-engage the teaching workforce in our schools. Motivating
former educators to return to the classroom is important. A national teaching shortage is possible
if many current educators decide not to work in schools again. This will harm the education of the
pupils, especially those in distant areas. They won’t be able to finish school. Once again, schools
will be closed. As a result, the national economy will suffer.
’Unemployment’ is a curse. We have to work to eliminate unemployment. ’Job-oriented’ education
should be provided for unemployed students. Work space should also be arranged for them.
Students who want to start a business have to arrange ’Student Loans’ so that they can get financial
support. Those who want to do something themselves should be encouraged. For them ’Student
Loan’ should be arranged. Students should develop a mindset where they don’t approach any
task lightly. They can earn their livelihood by engaging in self-reliant activities like agriculture,
animal husbandry, fishing, sewing, cottage industry, etc. Thus the unemployment rate of the
country will decrease. If the issues are not properly addressed, the demographic dividend for
Bangladesh could eventually become a demographic burden in the future. George Laryea-Adjei,
UNICEF Regional Director for South Asia, emphasized the importance of collaborative efforts
among governments, partners, and the private sector. He emphasized the need to not only align
strategies and investment levels correctly but also to construct more robust, efficient, and inclusive
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systems capable of fulfilling the fundamental human right of education for all children. This
commitment to education should remain steadfast, whether schools are open or closed [58].

Actions required to counter early marriage

During the 2014 Global Girl Summit, Bangladesh declared to reduce the number of girls marrying
between the ages of 15 and 18 by less than one-third By 2021. Bangladesh also committed to
ending child marriage by 2041. Since then Bangladesh Government has started to develop a
National Action Plan. The following steps can reduce child marriage in the context of the hit of
the pandemic.
In recent decades, Bangladesh has been making promising improvements in reducing the occur-
rence of child marriage. Impressive progress was underway with the Child Marriage Restraint
Act of 1929 [59] being reformed in 2017 [60]. It has been illegal for a girl under 18 and a boy
under 21 to be wed. The new law increases the punishment for committing or assisting in child
marriage. As per the recent legislation, in the case of an adult accused, the prescribed penalty
entails imprisonment for a maximum of two years, a fine not exceeding BDT 1 lakh, or both.
This legal consequence will also extend to guardians, relatives, or the marriage registrar who are
implicated in child marriage.
Since Eve-teasing and even rape threats are frequent in the country, marriage is typically seen
as a haven for young girls by their parents. The appropriate law enforcement agencies should
keep a vigilant eye out for these types of threats and act swiftly if necessary. Many closed-circuit
television cameras should be installed in public areas, including roadways, school entrances,
and other key locations, to protect the girls. We must ensure that no criminal escapes justice.
Government officials should step forward with a sizable budget and well-thought-out plans to
protect the families of poor, at-risk girls. Families can be given a monthly stipend, or even a set
amount of money, based on their financial situation, so that they are not in a position where they
have to sell their daughters off for poverty. Muslim-dominated Bangladesh has intricate cultural
dynamics. Emams in mosques should use their platforms to educate the public on the harms
of child marriage at a young age. Leaders in rural communities, such as the Union Parishad
Chairman, a member of the Union Parishad, or a Word Commissioner have a unique opportunity
to speak out against child marriage and educate the populace.

Efforts to re-engage dropout students in education

The government should have prepared a comprehensive long-term strategy to prevent students
from dropping out during the pandemic when the likelihood of them doing so was high. In the
aftermath of a pandemic, the government can still take the following measures to reduce dropouts
and get former dropouts back into school.
Every student who fell behind or quit studying because of the pandemic has to be contacted. It’s
impossible to do without a thorough survey. A survey detailing their present family, financial,
and mental health issues can help to direct the next steps in their care. The high rates of dropout
among children from low-income families highlight the need for continuous financial assistance
for these households. Monthly payment in addition to possible additional forms of assistance.
Without a system of corruption-free, open, and equitable distribution of funds, the good intentions
behind this initiative would go to waste and fewer deserving students would be able to complete
their education. Teachers should schedule regular meetings with parents to encourage both
students and their families to resume their educational pursuits. For kids who come from such
impoverished families that they cannot even provide for themselves with a daily meal, the midday
meal might be an extremely important factor. The implementation of creative new teaching
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strategies can boost the student’s engagement in the learning process. Educators throughout the
country must receive specialized training on fascinating topics so that students can return to their
regularly scheduled lessons with a greater sense of vigor once the pandemic has run its course.
Thus, COVID-19 has adversely affected our education sector. We have to take initiatives at the
government and private levels to reduce the impacts of COVID-19.

6 Conclusion

Education is the cornerstone of societal advancement, unlocking individuals’ potential to shape a
better future for themselves and their communities. The negative consequences of the COVID-19
pandemic have disrupted our educational institutions. The closure of many schools has resulted
in widespread job loss among teachers and hindered students’ pursuit of talent development.
Moreover, economic pressures have made things more difficult for students and their families,
highlighting the urgent need to address these issues to ensure equitable access to education and
enhance national advancement. This study aimed to underscore the detrimental repercussions of
COVID-19 on the education sector and examine potential measures to lessen these consequences.
Learning loss can have substantial and enduring consequences, particularly for students from
underprivileged circumstances who do not have access to resources for remote learning or other
educational support. Proactive steps are required to stop more learning loss and promote educa-
tional equity.
Strong educational policies and resources are essential to support all learners in achieving their
full potential. Extended periods of isolation, disruptions to daily routines, and the uncertainty
brought by the pandemic have led to increased anxiety, depression, and loneliness among students.
Authorities must raise awareness about mental health, cultivate a supportive school environment,
encourage physical activity and healthy habits, and integrate mindfulness and stress-reduction
techniques into the curriculum to enhance students’ mental well-being. Economic hardships faced
by families as a result of the pandemic have increased the risk of early marriage for some students,
particularly girls, as families consider marriage as a way to relieve financial strain or secure their
daughters’ futures.
By promoting economic independence and ensuring access to quality education, girls can get the
freedom to reject early marriage and shape their destinies. The pandemic-induced challenges, such
as unreliable internet access and technology, financial hardships, lack of in-person interactions,
loss of support networks, and general stress, have led to a rising number of students opting out
of education. Meeting these challenges requires collaborative endeavors aimed at narrowing the
digital divide, offering specialized assistance to at-risk students, providing sustainable financial
support, and reimagining resilient education delivery methods for potential future disruptions.
We graphed the drop in the number of students in various board exams due to COVID-19 in
Bangladesh and observed the outcomes by using the interpolation method. Our graphical anal-
ysis demonstrates the profound effects of COVID-19 on education in Bangladesh, particularly
through the noticeable decrease in enrollment for the country’s primary public exams, the Sec-
ondary School Certificate (SSC), and Higher Secondary Certificate (HSC) tests. In this research,
we comprehensively examined the multifaceted effects of COVID-19 on the education sector in
Bangladesh and explored potential strategies to mitigate the disruptions due to COVID-19.
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1 Introduction

Epidemiology, sometimes compared to the biological study of public health, focuses on the
prevalence and underlying causes of infection susceptibility among the general population. The
use of mathematical models to study such communicable diseases makes it easier to comprehend
how diseases spread, to identify elements that affect transmission for efficient control efforts, and
to assess goals and intervention approaches. Systematically introducing deterministic models for
infectious illnesses, Kermack and McKendrick [1, 2]. To better understand the process of disease
transmission, a number of researchers have investigated various epidemic systems by looking
at various models, such as those developed by SI [3], SIS [4], SIR [5–10], SIRS [9], SEIR [11–14],
SIQR [15], SEIRV [16, 17]. Infectious disease management has been harder during the last several
decades. One of the most important health measures for avoiding infectious diseases is vaccination
because of its safety and cost. Indeed, high vaccination rates have resulted in dramatic reductions
or even elimination of a variety of infectious illnesses, such as smallpox [18], SARS-CoV-2 infection
[19, 20]. In the modeling of infectious illnesses [21–27], the incidence rate is crucial in determining
the behavior at phenomena. In 1927, Kermack and Mckendrick [1] proposed the transmission
rate as βSI. The interaction effect is a linearly rising count of the amount of pathogens in this
incidence rate, which is unsuitable for a vast population. As a result, Capasso and Serio [28]
proposed a nonlinear occurrence g(I)S for g ′(I) < 0 that permits particular "behavioral" effects.
With behavioral modifications, Capasso and Serio inspired their approach. The potential damage
of infection may become extraordinarily high during times of high occurrence, leading to major
behavioral modifications that minimize the actual risk of illness [29]. Goel and Nilam [8], Wei and
Chen [30], Capasso et al. [31, 32], Zhang et al. [33], Anderson and May [34], Li et al. [35], including
Kumar and Nilam [9, 10]. A few writers [36–38], have drawn attention to the significance of
taking nonlinear incidence rates into account when studying the relationships between infectious

transmission and illness. Li et al. [35] presented a SIR model with f (S, I) =
βSI

1 + γI
.

It is well known that treatment rates are crucial in avoiding and limiting the spread of illnesses.
We are aware that the therapy resources in any community are insufficient. As a result, selecting
an effective treatment rate is critical for limiting disease transmission. Due to a lack of efficient
treatment options and vaccinations, epidemic prevention methods focus on efficient preventative
measures. Wang and Ruan [39] proposed the following SIR transmission dynamics with a fixed
treatment rate:

h(I) =

{
n for I > 0,

0 for I = 0.

Zhang and Liu [40], who also provided a superior treatment rate (Holling type II) as a continuously
differentiable function that populates at the largest benefit, as shown below: h(I) = mI

1+nI for I ≥
0, m > 0, n > 0, where m represents the cure rate and n represents the limitation rate in treatment
availability. Zhang et al. [41], Zhou et al. [42] and Dubey et al. [43] have investigated this nonlinear
saturation treatment rate in a somewhat different manner. Kumar [44] proposed a dynamical
model of epidemic along with time delay; Holling Type II incidence rate and Monod–Haldane
type treatment rate.

Motivation and research background

A particularly useful tool for modelling an infectious disease system that includes past illness
states, a memory of past disease patterns, a profile of genetic diversity, etc. is fractional calculus
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[45–48]. When compared to an integer order model, using fractional order derivatives to fine-tune
complicated dynamics within a disease system produces a more accurate picture. Because it
expands the possibilities of integer-order derivatives, fractional-order modelling is a useful tool
for analyzing disease features. The integer order derivative is limited to local characteristics,
but the fractional order derivative has a broad scope. When the system’s consistency domain is
improved, the fractional derivative likewise does better. In this paper, three potential categories
using the Caputo technique are studied using the fractional order SIR compartmental model with
a nonlinear incidence rate and nonlinear treatment rate. The saturated incidence rate of infection
is considered as Holling type II and the treatment rate is considered as Monod-Haldane (MH)
type. The existence and uniqueness criteria for the new models, as well as the solution’s positivity,
have been established, among other conclusions. Both at E0 and E1, we have covered the stability
analysis of our suggested model. For estimating the system solution, Taylor’s approach is also
used. We used the MATLAB (2018a) program to run numerical simulations and analyze the
graphical significance.

Paper structure

Section 2 introduces a pre-requisite concept. We developed the SIR epidemic model in Section 3 in
an environment of the Caputo derivative. In Section 4, the model’s solution has been examined
in terms of its existence, uniqueness, non-negativity, boundedness criteria, and stability analysis.
Using the control parameter treatment rate, we also provide an ideal control strategy for a SIR
model in Section 5. The suggested model’s approximate solution is discussed in Section 6 using
the fractional-order Taylor’s technique in the Caputo derivative. In Section 7, the MATLAB-based
numerical analysis is presented. Section 8 is where the paper comes to a conclusion.

2 Preliminaries

Definition 1 [49] Let f ∈ Cn([t0,∞+),IR), the Caputo derivative of fractional order α > 0 is defined by

C
t0

Dα
t f (t) =

1
Γ(n − α)

∫ t

t0

f (n)(s)
(t − s)α−n+1 ds,

where Γ(·) represent the Gamma function, t ≥ t0, n ∈ Z+ and α ∈ (n − 1, n).

Lemma 1 [50] Consider the system

C
t0

Dα
t u(t) = g(t, x), t0 > 0,

with initial condition u(t0) = ut0 , where α ∈ (0, 1], g : [t0,∞) × Ω → IRn, Ω ∈ IRn, if Lipschitz
condition is satisfied by g(t, x) with respect to x, then there exists a solution of (3.2) on [t0,∞)× Ω which
is unique.

Lemma 2 [51] Let 0 < α ≤ 1, ϕ(t) ∈ C [a, b]. If C
t0

Dα
t f (t) ≥ 0

(
C
t0

Dα
t f (t) ≤ 0

)
, t ∈ (a, b) then ϕ(t)

is a increasing (decreasing) function for t ∈ [a, b].

Lemma 3 [52] The Laplace transform of the Caputo derivative is given by:

L
{

C
t0

Dα
t f (t)

}
= pαF(p)−

n−1∑
j=0

pα−j−1 f j(t0),
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where F(p) = L { f (t)}.

Lemma 4 [53] For any B ∈ Cn×n where C be the complex plane and c, d > 0, the Laplace transform of
Mittag-Leffler function is defined as

L
{

td−1Ec,d(Btc)
}
= sc−d(sc − B)−1,

for R(s) > ∥B∥
1
c , where R(s) denotes the real portion of s.

Lemma 5 [53] Consider the following fractional-order system:

C
t0

Dα
t X(t) = Φ (X) , Xt0 = (x1

t0
, x2

t0
, ..., xn

t0
), xi

t0
> 0, i = 1, 2, ..., n,

with 0 < α ≤ 1, X(t) = (x1(t), x2(t), ..., xn(t)) and Φ(X) : [t0,∞) → Rn×n. The equilibrium
points of the above system are evaluated by solving the following system of equations: Φ(X) = 0.
These equilibrium points are locally asymptotically stable iff each eigenvalue λ of the Jacobian matrix

J(X) =
∂(Φ1, Φ2, ..., Φn)

∂(x1, x2, ..., xn)
calculated at the equilibrium points satisfy |arg(λi)| >

απ
2 .

Lemma 6 [54] Suppose g(t) ∈ R+ be a differentiable function. Then, for any t ≥ t0,

C
t0

Dα
t

[
g(t)− g∗ − g∗ ln

g(t)
g∗

]
≤
(

1 −
g∗

g(t)

)
C
t0

Dα
t g(t), g∗ ∈ R+, ∀α ∈ (0, 1).

Lemma 7 [54] One parametric and two parametric Mittag-Leffler functions are described as follows:

Eα(z) =
∞∑

j=0

zj

Γ(αj + 1)
, and Ea1,a2(z) =

∞∑
j=0

zj

Γ(a1 j + a2)
, where α, a1, a2 ∈ R+.

3 Formulation of the model system

We have introduced a mathematical framework that posits the division of the entire population,
denoted as N, into three distinct categories: susceptible individuals denoted as S, infected individ-
uals denoted as I, and individuals who have recovered, represented as R at a time t.
The sub-populations at different times may vary, but the total of all sub-populations remains
constant, denoted as N. This can be expressed as S(t) + I(t) + R(t) = N. The term βSI

1+γI is
the Holling type II functional response representing the saturated incidence rate of infection
among susceptible where β is the transmission rate between susceptible and infected population.
Also, the term mI

1+n2 I represents the Monod-Haldane type treatment rate, which describes the
non-monotonic behavior of the treatment rate due to limitations in the availability of effective
treatments. Table 1 provides a summary of the symbols used in the proposed model system.

C
t0

Dα
t S(t) = Λ − µS(t)−

βS(t)I(t)
1 + γI(t)

, S(t)|t=0 = S(0) > 0,

C
t0

Dα
t I(t) =

βS(t)I(t)
1 + γI(t)

−
mI(t)

1 + nI2(t)
− (µ + r + δ)I(t), I(t)|t=0 = I(0) > 0,

C
t0

Dα
t R(t) =

mI(t)
1 + nI2(t)

+ δI(t)− µR(t), R(t)|t=0 = R(0) > 0, (1)
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where 0 < α < 1, and C
t0

Dα
t denotes the Caputo operator.

Figure 1. The proposed SIR model’s flow diagram

Table 1. Significance of the relevant parameters

Parameters Biological meaning
Λ recruitment rate
µ death rate
β transmission rate
γ inhibitory rate
m treatment rate
n limitation rate in resources availability
δ recovery rate
r disease-induced mortality rate

4 Analysis of the system

Model existence and model uniqueness

Theorem 1 The model (1), with an initial condition of (S(t0), I(t0), R(t0)) belonging to the positive
region Γ+, invariably exhibits a singular solution within the domain Γ+ for all time points t ≥ t0.

Proof Let Ω = {(S, I, R) ∈ IR3 : max(|S| , |I| , |R|) ≤ M} where τ and M are finite positive real
numbers for the region Ω × [t0, τ]. Let Y = (S, I, R) and Y = (S̄, Ī, R̄).
Consider a mapping F(Y) = (F1(Y), F2(Y), F3(Y)), where

F1(Y) = Λ − µS(t)−
βS(t)I(t)
1 + γI(t)

,

F2(Y) =
βS(t)I(t)
1 + γI(t)

−
mI(t)

1 + nI2(t)
− (µ + δ + r)I(t),

F3(Y) =
mI(t)

1 + nI2(t)
+ δI(t)− µR(t).
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For any Y, Y ∈ Ω:∥∥F(Y)− F(Y)
∥∥

=
∣∣F1(Y)− F1(Y)

∣∣+ ∣∣F2(Y)− F2(Y)
∣∣+ ∣∣F3(Y)− F3(Y)

∣∣
=

∣∣∣∣Λ − µS −
βSI

1 + γI
−

(
Λ − µS̄ −

βS̄ Ī
1 + γ Ī

)∣∣∣∣
+

∣∣∣∣ βSI
1 + γI

−
mI

1 + nI2 − (µ + δ + r) I −
(

βS̄ Ī
1 + γ Ī

−
mĪ

1 + nĪ2

)
+ (µ + δ + r) Ī

∣∣∣∣
+

∣∣∣∣ mI
1 + nI2 + δI − µR −

(
mĪ

1 + nĪ2
+ δ Ī − µR̄

)∣∣∣∣
≤ µ

∣∣(S − S̄)
∣∣+ 2β

∣∣∣∣( SI
1 + γI

−
S̄ Ī

1 + γ Ī

)∣∣∣∣+ 2m
∣∣∣∣( I

1 + nI2 −
Ī

1 + nĪ2

)∣∣∣∣
+ (µ + 2δ + r)

∣∣(I − Ī)
∣∣+ µ

∣∣(R − R̄)
∣∣

≤ µ
∣∣(S − S̄)

∣∣+ 2β

∣∣∣∣(SI(1 + γ Ī)− S̄ Ī(1 + γI)
(1 + γI)(1 + γ Ī)

)∣∣∣∣+ 2m

∣∣∣∣∣
(

I(1 + nĪ2)− Ī(1 + nI2)

(1 + nI2)(1 + nĪ2)

)∣∣∣∣∣
+ (µ + 2δ + r)

∣∣(I − Ī)
∣∣+ µ

∣∣(R − R̄)
∣∣

≤ µ
∣∣(S − S̄)

∣∣+ 2βK[M
∣∣(S − S̄)

∣∣+ ∣∣(I − Ī)
∣∣+ γM2 ∣∣(I − Ī)

∣∣] + 2mL(1 + nM2)
∣∣(I − Ī)

∣∣
+ (µ + 2δ + r)

∣∣(I − Ī)
∣∣+ µ

∣∣(R − R̄)
∣∣

≤ (µ + 2βMK))
∣∣(S − S̄)

∣∣+ (µ + 2δ + r + 2mL(1 + nM2) + 2βK(1 + γM2)
) ∣∣(I − Ī)

∣∣+ µ
∣∣(R − R̄)

∣∣
≤ G1

∣∣S − S̄
∣∣+ G2

∣∣I − Ī
∣∣+ G3

∣∣R − R̄
∣∣

≤ G
∥∥Y −Y

∥∥ ,

where G = max{G1, G2, G3}, G1 = (µ + 2βM) , G2 =
(
µ + 2δ + r + 2mL(1 + nM2) + 2βK(1 + γM2)

and G3 = µ, where
∣∣(1 + γI)(1 + γ Ī)

∣∣ ≥ K and
∣∣∣(1 + nI2)(1 + nĪ2)

∣∣∣ ≥ L. Thus, F(Y) satisfies
Lipschitz’s criteria. So Y(t) is a unique solution of model (1), with the help of Lemma 1.

Boundedness and non-negativity

Theorem 2 Any solutions originating from the initial condition (S(t0), I(t0), R(t0)) in model (1) are
characterized by non-negative values.

Proof Let Y(t0) = (S(t0), I(t0), R(t0)) ∈ Γ+ be the initial solution of (1). Firstly, we shall prove
that S(t) ≥ 0 for all t ≥ 0. For this, we assume that S(t) ≥ 0 is not true. Then there exists a τ1 > 0,
such that 

S(t) > 0 for t0 ≤ t < τ1,
S(t) = 0 for t = τ1,
S(t) < 0 for τ1 < t < τ1 + ϵ1 for ϵ1 > 0.

With the help of system (1), we have

C
t0

Dα
t S(t)|S(τ1)=0 = Λ > 0.

Using Lemma 2, for any 0 < ϵ1 << 1, we have S(τ1 + ϵ1) = S(τ1) +
1
α

dα

dtα S(t)ϵ1
α. As a result,

S(τ1 + ϵ1) ≥ 0, contradicts our assumption that S(t) < 0 for τ1 < t < τ1 + ϵ1. Therefore, we get
S(t) ≥ 0, ∀t ∈ [t0,∞). Secondly, we shall prove that I(t) ≥ 0 for all t ≥ 0. For this, we assume



Paul et al. | 91

that I(t) ≥ 0 is not true. Then there exists a τ2 > 0, such that
I(t) > 0 for t0 ≤ t < τ2,
I(t) = 0 for t = τ2,
I(t) < 0 for τ2 < t < τ2 + ϵ2 for ϵ2 > 0.

With the help of system (1), we have

C
t0

Dα
t I(t)|I(τ2)=0 = 0.

Using Lemma 2, for any 0 < ϵ2 << 1, we have I(τ2 + ϵ2) = I(τ2) +
1
α

dα

dtα I(t)ϵ2
α. As a result,

I(τ2 + ϵ2) = 0, contradicts our assumption that I(t) < 0 for τ2 < t < τ2 + ϵ2. Therefore, we get
I(t) ≥ 0, ∀t ∈ [t0,∞). Lastly, we shall prove that R(t) ≥ 0 for all t ≥ 0. For this, we assume that
R(t) ≥ 0 is not true. Then there exists a τ3 > 0, such that

R(t) > 0 for t0 ≤ t < τ3,
R(t) = 0 for t = τ3,
R(t) < 0 for τ3 < t < τ3 + ϵ3 for ϵ3 > 0.

With the help of system (1), we have

C
t0

Dα
t R(t)|R(τ3)=0 =

mI(τ3)

1 + nI2(τ3)
+ δI(τ3) > 0.

Using Lemma 2, for any 0 < ϵ3 << 1, we have R(τ3 + ϵ3) = R(τ3) +
1
α

dα

dtα R(t)ϵ3
α. As a result,

R(τ3 + ϵ3) ≥ 0, contradicts our assumption that R(t) < 0 for τ3 < t < τ3 + ϵ3. Therefore, we get
R(t) ≥ 0, ∀t ∈ [t0,∞).

Theorem 3 All solutions of system (1) are bounded.

Proof Now N(t) = S(t) + I(t) + R(t), then

C
t0

Dα
t N(t) = C

t0
Dα

t S(t) +C
t0

Dα
t I(t) +C

t0
Dα

t R(t)
= Λ − µN(t)− rI(t).

Therefore,

C
t0

Dα
t N(t) + µN(t) ≤ Λ (as I ≥ 0).

We get (using Lemma 3):

zαF(z)− zα−1N(0) + µF(z) ≤ Λ
z

, where F(z) = L {N(t)}⇒ F(z)(zα+1 + zµ) ≤ zαN(0) + Λ⇒ F(z) ≤ zαN(0) + Λ
zα+1 + zµ

=
zαN(0)

zα+1 + zµ
+

Λ
zα+1 + zµ

.
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Using inverse Laplace transform:

N(t) ≤ N(0)Eα,1(−µtα) + ΛtαEα,α+1(−µtα).

From the properties of Mittag-Leffler function [55], we get

Ec,d(x) = xEc,c+d(x) +
1

Γ(d)
.

Hence,

N(t) ≤ (N(0)−
Λ
µ
)Eα,1(−µtα) +

Λ
µ

.

As a result, the system solutions are bounded. It completes the proof of the theorem. The impact
of R(t) on the first two equations in system (1) is unaltered. System (1) might be converted to a
two-dimensional system on the presumption that the whole population N is constant. The third
equation of the system (1) is traditionally omitted. As a result, we have:

C
t0

Dα
t S(t) = Λ − µS(t)−

βS(t)I(t)
1 + γI(t)

, S(t)|t=0 = S(0) > 0,

C
t0

Dα
t I(t) =

βS(t)I(t)
1 + γI(t)

−
mI(t)

1 + nI2(t)
− (µ + r + δ)I(t), I(t)|t=0 = I(0) > 0. (2)

Equilibrium points of the model (2)

Let C
t0

Dα
t S(t) = 0 and C

t0
Dα

t I(t) = 0. The model (2) has two equilibrium points namely,

i. The infection free equilibrium is E0(
Λ
µ , 0).

ii. The endemic equilibrium is E1(S∗, I∗), where

S∗ = Λ+I∗(−m−µ−δ−r)+I∗2(Λn)−n(µ+δ+r)I∗3

µ(1+nI∗2)
and XI∗3 + YI∗2 + ZI∗ + W = 0, where X = n(µγ +

β)(µ + δ + r), Y = µn(µ + δ + r)− βΛn, Z = (µγ + β)(m + µ + δ + r) and W = µ(µ + m +

δ + r)− Λβ.

The basic reproduction number

The next-generation matrix [56] technique is used to calculate the model’s basic reproduction
number R0, which may be determined from the biggest eigenvalue of the matrix FV−1 where,

F =

[
βΛ
µ 0
0 0

]
, and V =

[
m + µ + δ + r 0

βΛ
µ µ

]
.

Therefore, R0 =
βΛ

µ(m + µ + δ + r)
.
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Stability analysis at E0

Let us consider J0(S, I) = F where,

F =

[
F11 F12
0 F22

]
,

where

F11 = −µ, F22 = −(m + µ + δ + r), F12 = −
βΛ
µ

.

Theorem 4 The point E0 of system (2) is locally asymptotically stable.

Proof At E0 the Jacobian matrix is given by

J0(
Λ
µ

, 0) =

[
−µ −

βΛ
µ

0 −(m + µ + δ + r)

]
.

The eigenvalues of the system are λ1 = −µ,λ2 = −(m + µ + δ + r). It follows that |arg(λi)| = π >
απ
2 (i = 1, 2) where 0 < α < 1. Therefore E0 is asymptotically stable locally by Lemma 5.

To discuss the global stability at E0 of system (2), first we assume that G((S(t), I(t)) = βS(t)I(t)
1+γI(t) , is

always positive, monotonically increasing and continuously differentiable for all S > 0 and I > 0.
That satisfies the following conditions [9, 57]:
C1 : G((S(t), I(t)) > 0, G

′
S((S(t), I(t)), G

′
I((S(t), I(t)) for S > 0 and I > 0.

C2 : G((S(t), 0) = G((0, I(t)) = 0, G
′
S((S(t), 0) = 0, G

′
I((S(t), 0) > 0 for S > 0 and I > 0.

C3 : G
′
I((S(t), 0) is increasing with respect to S(t) > 0.

C4 : G
′
S((S0,0)

G ′
I ((S(t),0)

< 1 for S(t) > S0;
G

′
S((S0,0)

G ′
I ((S(t),0)

> 1 for S(t) ∈ (0, S0).

Theorem 5 Suppose that (C1) to (C4) are satisfied, the point E0 of system (2) is globally asymptotically
stable.

Proof Let L be the Lyapunov function defined as:

L = (S − S0 −

∫S

S0

lim
t→0+

G(S0, I)
G(g, I)

dg) + I.

The aforementioned function’s time derivative is

C
t0

Dα
t L = (1 − S

S0
)C

t0
Dα

t S +C
t0

Dα
t I

= −
µ(S − S0)

2

S
+

βS0 I
1 + γI

−
mI

1 + nI2 − (µ + δ + r)I

−
µ(S − Λ

µ )
2

S
+

(µ + δ + r + m)(R0 − 1)I
1 + γI

−
[−γ(µ + δ + r + m) + mnI − nγ(δ + r + m)I2]I2

(1 + γI)(1 + nI2)
.
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Since all parameters of the system are positive, then C
t0

Dα
t L ≤ 0 if R0 ≤ 1 and C

t0
Dα

t L = 0 if
S = S0 = Λ

µ , I = I0 = 0. The point E0 is asymptotically stable globally.

Stability analysis at E1

At E1(S∗, I∗), we get

J(S∗, I∗) =
[

E F
G H

]
,

where

E = −µ −
βI∗

1 + γI∗
,

F = −
βS∗

(1 + γI∗)2 ,

G =
βI∗

(1 + γI∗)
,

H =
βS∗

(1 + γI∗)2 −
m(1 − nI∗

2
)

(1 + nI∗2)2
− (µ + δ + r).

Theorem 6 The point E1(S∗, I∗) of system (2) is asymptotically stable locally.

Proof The characteristic equation is λ2 + (E + H)λ + (EH − FG) = 0. We have −(E + H) < 0
and the roots of the characteristic equation are

λ1,2 =
−(E + H)

2
±

√
(E + H)2 − 4(EH − FG)

2
.

If EH > FG then
∣∣arg(λ1,2)

∣∣ = π > απ
2 ; 0 < α < 1, since (E + H)2 − 4(EH − FG) = (E − H)2 +

4FG. Using Lemma 5, the point E1 is locally asymptotically stable in SI plane.

Theorem 7 The point E1(S∗, I∗) of system (2) is globally asymptotically stable.

Proof Let us consider the following hypothesis:

H(1) :
mI∗

1 + nI∗2 +
(1 + I)βS∗ I∗

1 + IγI∗
+

m
1 + nI∗2

≤ [
mI

1 + nI2 +
βS∗2

S + SγI∗
+ I∗(

Sβ

1 + γ
+

m
1 + nI2 I∗2 )].

Since (S∗, I∗) is the endemic equilibrium point of model (2), then

Λ − µS∗ =
βS∗ I∗

1 + γI∗
,

βS∗ I∗

1 + γI∗
=

mI∗

1 + nI∗2 + (µ + δ + r)I∗. (3)

Let us consider the Goh-Volterra form as

W(S, I) =
(

S − S∗ − S∗ ln
S
S∗

)
+

(
I − I∗ − I∗ ln

S
S∗

)
. (4)
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Now, along the integral curves of (2):

C
t0

Dα
t W(S, I) ≤ S − S∗

S
C
t0

Dα
t S(t) +

I − I∗

I
C
t0

Dα
t I(t) (using Lemma 6)

=
mI∗

1 + nI∗2 +
(1 + I)βS∗ I∗

1 + IγI∗
+

m
1 + nI∗2

−[
mI

1 + nI2 +
βS∗2

S + SγI∗
+ I∗(

Sβ

1 + γ
+

m
1 + nI2 I∗2 )] (using (4)).

Hence, by H(1), we have

C
t0

Dα
t W(S, I) ≤ 0, ∀(S, I) ∈ Ω, (5)

and C
t0

Dα
t W(S, I) = 0 if (S, I) = (S∗, I∗). So, the point E1(S∗, I∗) is globally asymptotically stable.

5 SIR model with optimal control

One of the most important tools in the fight against infectious illnesses is the treatment rate. On
the subject of optimal control theory in fractional derivatives, Ding et al. [58] and Agarwal et al.
[59] have contributed. The fractional optimum control principle is fundamentally challenged by
Pontryagin’s maximum principle [60]. Our goal is to utilize the control measure v (0 ≤ v(t) ≤ 1)
to account for the value of immunization and to choose the optimum control v∗ to reduce the cost
function J(v) of the control strategy. The cost function:

J(v∗) = min (J(v(t))) with J(v) =
(∫ t f

0
[I + A1v2] dt

)
, (6)

subject to

C
t0

Dα
t S(t) = Λ − µS(t)−

βS(t)I(t)
1 + γI(t)

, S(0) > 0,

C
t0

Dα
t I(t) =

βS(t)I(t)
1 + γI(t)

−
vI(t)

1 + nI2(t)
− (µ + δ + r)I(t), I(0) > 0,

C
t0

Dα
t R(t) =

vI(t)
1 + nI2(t)

+ δI(t)− µR(t), R(t)|t=0 = R(0) > 0, (7)

where 0 ≤ v(t) ≤ 1.

Theorem 8 Let v(t) be a measurable control function on [0, t f ], with v(t) ∈ [0, 1]. Then there exists an

optimal control v∗ to minimize J(v) of (6) with v∗=max [min(v, 1), 0], v =
(ϵ2 − ϵ3)I

2A1(1 + nI2)
.

Proof The following method has been used to study the Hamiltonian:

H = [I + A1v2] + ϵ1(Λ − µS(t)−
βS(t)I(t)
1 + γI(t)

) + ϵ2(
βS(t)I(t)
1 + γI(t)

−
vI(t)

1 + nI2(t)
− (µ + δ + rI(t))

+ ϵ3(
vI(t)

1 + nI2(t)
+ δI(t)− µR(t)),
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with adjoint variables ϵi(t), i = 1, 2, 3 expressed as:

RL
t0

Dα
t ϵ1(t)(t) = −

∂H
∂S

= −ϵ1(−µS(t)−
βI

1 + γI
)− ϵ2

βI
1 + γI

,

RL
t0

Dα
t ϵ2(t)(t) = −

∂H
∂I

= −1 − ϵ1(−
βS

(1 + γI)2 )− ϵ2(−
βS

(1 + γI)2 −
v(1 − nI2)

(1 + nI2)2

−(µ + δ + r))− ϵ3(
v(1−nI2)
(1+nI2)2 + δ),

RL
t0

Dα
t ϵ3(t)(t) = −

∂H
∂R

= ϵ3µ.

As a result, the issue of decreasing the Hamiltonian with regard to the control is now the problem
of finding v∗ that minimizes H in the context of (7). The Pontryagin principle is then used to
produce the following ideal circumstance:

∂H
∂v

= 2A1v + (ϵ2 − ϵ3)(
I

1 + nI2 ).

It may be solved with adjoint variables and state variables to produce:

v =
(ϵ2 − ϵ3)I

2A1(1 + nI2)
.

Consider the control restrictions and the sign of the function ∂H
∂v for the best control v∗. As a result,

we get

v∗ =


0 i f ∂H

∂v < 0,

v i f ∂H
∂v = 0,

1 i f ∂H
∂v > 0.

The ideal circumstance for the model system may be obtained by applying v∗ to the equation
above (7).

6 Numerical procedure

The model system (2), as stated in Theorem 1, has a single solution. Taylor’s theorem will be used
to find the model’s numerical solution [60]. Then,

C
t0

Dα
t S(t) = u1(t, S, I), S(0) = S0, t > 0. (8)

Consider the set of points [0, A] as the points on which we are prepared to approximate the
system’s solution. Actually, we are unable to calculate S(t), which will be the system’s necessary
solution. We divide [0, A], into P subintervals [tj, tj+1] of length, i.e., w = A

P , using the nodes
tj = jw, for j = 0, 1, 2, ..., P. We extend the Taylor’s theorem at about t = t0, we have a constant
k ∈ [0, A], so that

S(t)= S(t0)+ C
t0

Dα
t S(t)

{ wα

Γ(α + 1)

}
+ C

t0
D2α

t [S(t)]t=k

{ w2α

Γ(2α + 1)

}
.

Now substitute C
t0

Dα
t S(t) = u1(t0, S(t0), I(t0)) and t = t0 in the above equation which provides

S(t1)=S(t0)+u1(t0, S(t0), I(t0))
{ wα

Γ(α + 1)

}
+C

t0
D2α

t [S(t)]t=k

{ w2α

Γ(2α + 1)

}
.
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If m is small, we ignore the higher terms, then

S(t1)=S(t0)+ u1(t0, S(t0), I(t0))
{ wα

Γ(α + 1)

}
. A general formula of expanding about tj = tj + w,

provides

S(tj + 1)=S(tj)+ u1(tj, S(tj), I(tj))
{ wα

Γ(α + 1)

}
.

Similarly, we have

I(tj + 1)=I(tj)+ u1(tj, S(tj), I(tj))
{ wα

Γ(α + 1)

}
.

7 Numerical discussion

In this part, we evaluate and verify the analytic results of our model system (1) using detailed
numerical simulations. Although the majority of fractional order differential equations lack accu-
rate analytic solutions, approximation, and numerical methods have been devised. Through the
mathematical software MATLAB (2018a), we have employed Taylor’s theorem in the numerical
scheme. Following are several categories for the numerical output of model simulations and the
accompanying findings:

Table 2. Parameter values for numerical study

Parameters Values Reference
Λ 5 Estimated
µ 0.05 Assumed
β 0.003 Assumed
γ 0.06 Assumed
m 0.03 Assumed
n 0.04 Assumed
δ 0.002 Assumed
r 0.02 Assumed

Case 1: Dynamical features of the whole population for different fractional orders The parame-
ters’ values in Table 2 are used to examine people’s dynamic behaviour. All individuals’ behaviour
over time for different fractional orders α is shown in Figure 2 through Figure 4. The number of
susceptible people rises as α moves from 0.90 to 0.98, as seen in Figure 2. The number of infected
people rises over time as α rises, as seen in Figure 3. When α in Figure 4 goes from 0.90 to 0.98,
there are more people who have been found.

Case 2: Stability analysis of the proposed model Figure 5 to Figure 7 depicts the global
stability of system (1) at E1 with different initial condition taking α=0.90, 0.94, 0.98, confirming
our theoretical results in Theorem 6. Case 3: Impact of α on S and I Figure 8 and Figure 9 show
the effects of α on susceptible and infected people. It can be shown from Figure 8 that the number
of susceptible persons rises as α increases. Figure 9 shows that the number of infected people first
declines but then rises over time.
Case 4: Mean density of S and I under γ values Plotting the mean densities of S and I with

respect to γ for different fractional orders is shown in Figure 10 and Figure 11. As seen in Figure 10,
the mean density of susceptible people rises as the value of α rises. Figure 11 shows that as the
values of α fall, the mean density of infected people rises with regard to γ.
Case 5: Mean density of S and I under δ values Figure 12 and Figure 13 shows the plot of mean

density of S and I with respect to δ for various fractional order. Figure 12 shows that the mean
density of susceptible people rises as the value of α rises. Figure 13 shows that as the values of α

decline, the mean density of infected people rises with regard to δ.
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Figure 2. The behavior of Susceptible individuals for values of α = 0.90, 0.94, 0.98
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Figure 3. The behavior of Infected individuals for values of α = 0.90, 0.94, 0.98



Paul et al. | 99

0 20 40 60 80 100

time(t)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
R

e
c
o
v
e
re

d
(R

)
=0.98

=0.94

=0.90

Figure 4. The behavior of Recovered individuals for values of α = 0.90, 0.94, 0.98
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Figure 5. Phase portrait diagram for values of α = 0.90
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Figure 10. Mean density of S under γ for α = 0.90, 0.94, 0.98

Figure 11. Mean density of I under γ for α=0.90, 0.94, 0.98



Paul et al. | 103

Figure 12. Mean density of S under δ for α=0.90, 0.94, 0.98

Figure 13. Mean density of I under δ for α = 0.90, 0.94, 0.98
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Case 6: Variation of γ under S and I for α = 0.98 Figure 14 and Figure 15 shows that the effect
of γ on S and I with time for α=0.98. Figure 14 demonstrates a rise in the number of vulnerable
people as the inhibitory rate γ drops and reaches its stable state, but the illness is not completely
eradicated since it will continue to exist at a much lower level. We noticed that the infected popu-
lation drops when the inhibitory rate γ rises in Figure 15. Thus, it is assumed that preventative
actions conducted by vulnerable and sick individuals will aid in reducing the spread of illness.

Figure 14. Variation of γ under S for α=0.98

Figure 15. Variation of γ under I for α=0.98
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Case 7: Variation of δ under S and I for α=0.98. Figure 16 and Figure 17 shows that the effect
of δ on S and I with time for α=0.98. As the recovery rate δ declines and reaches its steady
state, Figure 16 depicts a rise in the number of sensitive people. In Figure 17, we observed that the
infected population decreases when the recovery rate δ changes from 0.001 to 0.003.

Figure 16. Variation of δ under S for α=0.98

Figure 17. Variation of δ under I for α=0.98
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Case 8: Optimal control Figure 18 and Figure 19 depict the time series of people who are vul-
nerable to infection, those who have been infected, and those who have recovered over a time
period of [0, 100], with optimum control using fractional order α=0.9. Infectious illness prevention
depends heavily on treatment rates, and several theories have been put out in which vaccination
rates are seen as very advantageous. The reproduction number R0 falls as a consequence of the
inclusion of the treatment rate parameter. We chose a final time of t f =100 for the simulation of the
optimum control problem governed by model (1), which corresponds to Table 2. The time series
of the ideal cost J∗ and the ideal control variable v∗ are shown in Figure 20 and Figure 21.
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Figure 18. When α=0.9, the time series of the model system (1) corresponds to Table 2
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8 Conclusion

The mathematical model used in this article aims to depict the dynamics of infectious disease when
the ratio of infected to susceptible populations is high, taking into account the effects of inhibitory
activity, behavioral changes that occur during epidemics, and the limitations of treatment facilities.
Analyzing the stability characteristics of equilibrium points corresponding to no infection and
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sustained infection states, it is shown that the disease-free equilibrium is locally asymptotically
stable when R0 < 1 and unstable when R0 > 1.
The R-H criteria has been used to examine the stability of the model’s endemic equilibrium. The
simulation results predict that the infection will worsen as the rate of transmission rises, but that
it will stabilize due to the accessibility of treatment centres. Furthermore, the prevalence of the
infection decreases proportionally when the amount of suppression used by the affected people
increases. The results of our simulation also showed that, in order to successfully eradicate the
virus, the treatment of the population must be closely coordinated with the resources at hand.
Understanding the complexities of disease outbreaks is made possible by the use of epidemic
modelling. Numerical simulations provide the visualization of the efficacy of theoretical solutions.
Comprehensive information, suitable infectious disease treatment methods, and the availability of
healthcare services are required for the successful decrease of infection within society. In addition,
we showed the global stability of the equilibrium state by choosing an appropriate Lyapunov
function.
The importance of fractional order to population dynamics has also been noted. The optimum
solution to the optimal control issue must meet certain requirements, which we have established
using Pontryagin’s Maximum Principle. It is obvious that the disease’s spread can be stopped
and eliminated if the control measure v∗ is used. Additionally, Theorem 8 has identified the ideal

control value v∗ to reduce the cost of vaccination, as shown by J(v) =
(∫t f

0 [I + A1v2] dt
)

. For
optimum control, we presume a final time t f = 100. As a consequence, changing the derivatives’
order may change the stability requirements for equilibrium locations without changing any other
parametric variables. We are unable to analyze our findings using an integer order method since
we have achieved so little theoretical advancement in this fractional order framework. We find a
variety of biological modelling outcomes based on fractional differential equations in this work.
The proposed model may be analyzed further to explore chaotic solutions and various forms of
bifurcations by incorporating time delay parameters. More than one control parameter may be
used to better understand the treatment strategies and management of the spread of the disease.
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Abstract
In this study, brucellosis dynamics between interspecies are discussed with the Atangana-Baleanu
fractional derivative to examine the transmission of brucellosis by its behavior. The recovered compart-
ment, recruitment, and natural death rate for humans are considered for the fractional order model to
analyze the transmission dynamics in more detail from an epidemiological point of view. Additionally,
the saturated incidence rate is suggested for brucellosis as indirectly transmitted to individuals from
the environment. By fixed point theory, it is verified that developed fractional transmission dynamics
have a unique solution. The model under consideration employs the Adams-type predictor-corrector
method for numerical solution. All comparative results are plotted by MATLAB.

Keywords: Atangana-Baleanu derivative; brucellosis; existence and uniqueness; fixed point theory;
mathematical modeling
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1 Introduction

Brucellosis is a zoonotic illness that can be transferred to individuals by direct contact with infected
animals or indirectly from Brucella in a contaminated environment [1]. Humans are transmitted by
it in various manners. Firstly, humans can contract brucellosis by consuming rare cooked meat or
unpasteurized dairy products. Second, researchers studying bacteria in a laboratory environment
can become infected by breathing in Brucella. Finally, it can be transmitted to veterinarians or
staff working who come into intimate touch with the skin deformation or droppings of infected
animals. Furthermore, it is known that human-to-human transmission is extremely uncommon
[2]. Even though the mortality from the disease is negligible in humans, brucellosis causes serious
organ damage and can continue for several years. Apart from that, the case is not thought to be so
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severe in animals. However, the infection can lead to significant financial damage by decreasing
infant survival, milk production, reproduction, and prolificacy [3, 4]. To contain these negative
results from happening, it is necessary to prevent brucellosis transmission in animals. Vaccination
is often the first preferred way for transmissible diseases, and animals can be vaccinated against
brucellosis. Still, it is plenty challenging to eradicate the infection by only vaccination [5]. Detection
and elimination of infected animals are other significant measures. It is necessary to understand
the dynamics of brucellosis in order to apply additional preventive measures.
Epidemiological models can analyze the course of the diseases since they are constructed by
considering the characteristics of the infection and the nature of each one [6–8]. On the contrary,
fractional derivatives have allowed many real-world problems to be solved, as they can fulfill
complex manners due to their definition [9–12]. Therefore, epidemiological models are analyzed
according to the transmission dynamics behavior when combined with fractional derivatives [13–
20]. In this context, various mathematical models are discussed by researchers for predicting the
dynamics of brucellosis, both integer and fractional. Li et al. examined the impact of preventative
strategies and different incidence rates on the transmission of Brucella in China via integer-order
models [21, 22].
Lolika et al. and Nyerere et al. proposed integer-order dynamical models for the spreading of bru-
cellosis, incorporating the impacts of seasonality [23, 24]. In addition, Nyerere et al. investigated
the efficacy of treatment for humans by presenting another integer-order model for brucellosis
spread among humans and animals [25]. Sun et al. offered a systematic examination of the trans-
mission dynamics of several brucellosis integer-order mathematical models with their application
in China [26]. Lolika and Helikumi proposed and studied two integer-order mathematical models
for human brucellosis transmission, in which humans become infected through contact with
wildlife and cattle [27]. Another important research topic that has attracted attention recently is
the interspecies transmission of brucellosis. Ma et al. posed a discrete model for sheep-human
brucellosis transmission dynamics in Jilin, China, and investigated the effectiveness of control
measures [28]. Abagna et al. developed a deterministic model to investigate the transmission
dynamics and control of bovine brucellosis in a cattle herd [29]. Thongtha and Modnak formulated
an interactive bison–human environment mathematical model that contains the impact of human
transmission, chronic brucellosis, and control strategy on the brucellosis dynamics [30]. More
than that, Peter constructed the fractional model based on hypothetical data, only considering the
transmission of brucellosis among cows [31]. Loika and Helikumi describe a fractional model that
reveals the transmission of brucellosis among sheep only, utilizing real data from Egypt [32].
As mentioned above, few studies in the literature discuss the fractional-order brucellosis model.
Unfortunately, these models do not deal with the transmission of brucellosis among different
species of populations. However, since brucellosis increases by showing an exponential behavior
depending on the transmission rate of the infection [33], it would be more realistic to study it with
a derivative operator that had this behavior. Thanks to the crossover property of the Atangana-
Baleanu derivative in terms of Caputo (ABC), it not only allows the explanation of more complex
nonlinear phenomena but also does not cause singularity problems at the beginning and end of
biological processes. This provides a better insight into the models at their critical points. Due to
all these advantages, the ABC derivative has been quite successful in modeling infectious diseases
under reality in recent years [34–36].
Incidence rates are another significant element in epidemiological models because they charac-
terize the functional relationship between susceptible and infected people. The incidence rate in
epidemiological models is directly proportional to the population’s lifestyle and overpopulation
and is a consideration that especially impacts the dynamics of transmission. To illustrate the
standard incidence rate is expressed based on the total population, while the bi-linear incidence
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rate is associated with the law of mass action [37]. The saturated incidence rate improved by
Capasso and Serio [38] is frequently favored to describe indirect transmission from bacterial
infections such as cholera and brucellosis [22, 26, 39–41], as it causes a saturation level when the
exposed (infected) individuals achieve their utmost. Since the amount of Brucella that causes
infection by interacting is present at this incidence rate, the interaction rate is controlled with fitting
parameters by determining the behavioral change and population density of infected individuals.
For bacterial diseases, the saturated incidence rate appears to be closer to reality than the bilinear
incidence rate.
Motivated by continuing investigation into this topic, in this study, the deficiencies in the trans-
mission model of brucellosis between sheep and humans proposed by Hou et al. with data from
the Inner Mongolia region of China are dealt with and discussed via ABC derivative [42]. As far
as we know, the interspecific brucellosis transmission model with ABC derivative has not yet been
examined. It is also considered the recovered compartment (with recovery rate) for the human
population in the model, the recruitment rate for susceptible humans, and the mortality rate for all
humans. Besides, indirect brucellosis transmission is given with a saturated incidence rate instead
of the bilinear incidence rate for a more realistic analysis. The unit consistency of the model is
also included. It is not always possible to achieve the exact solution of nonlinear fractional-order
models. On that account, according to the fixed point theory, it is shown that there exists a unique
solution to the fractional brucellosis model. Then, the Adam-type predictor-corrector method is
utilized to perform the numerical solution of the model.
The remainder of this article is structured as follows: Section 2 presents some primary concepts
of fractional calculus and the developed interspecies fractional-order brucellosis transmission
model. Section 3 employs fixed-point theory to demonstrate the existence and uniqueness of the
model of solutions. Section 4 is devoted to the numerical solution and discussion. Finally, Section 5
includes conclusions of the analysis work and gives future direction.

Preliminaries

Here, more details and some definitions and concepts necessary for the completion of this study
are presented.

Definition 1 ([43]) For 0 ≤ α ≤ 1 and f ∈ H1 (a, b), the α-order left and right ABC fractional derivatives
of the f are expressed as

ABC
aDα

t f (t) =
M (α)

1 − α

∫ t

a

d f (ϱ)
dϱ

Eα

[
−

α

1 − α
(t − ϱ)α

]
dϱ, (1)

ABC
tDα

b f (t) =
−M (α)

1 − α

∫ b

t

d f (ϱ)
dϱ

Eα

[
−

α

1 − α
(ϱ − t)α

]
dϱ, (2)

where Eα is the Mittag-Leffler function and M (α) is the normalization function such as M (α) = 1−
α + α

Γ(α) with M (0) = M (1) = 1.

Definition 2 ([43]) The Atangana-Baleanu fractional integral of α-order of the f is expressed as

ABC
a Iα

t f (t) =
1 − α

M (α)
f (t) +

α

M (α) Γ (α)

t∫
a

(t − ϱ)α−1 f (ϱ) dϱ. (3)
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2 Fractional-order brucellosis transmission model

In this section, not only the time derivative is replaced within the ABC sense to examine the
brucellosis model by the transmission behavior, but it is also developed by eliminating the
deficiencies in the model introduced by Huo et al. [42] for interspecies brucellosis transmission.
The brucellosis model as introduced in [42] is given by

dS
dt

= A − βS (E + I)− ϕSB − (µ + ν) S + δV,

dV
dt

= νS − (µ + δ)V − εβV (E + I)− εϕVB,

dE
dt

= β (S + εV) (E + I) + ϕ (S + εV) B − (σ + µ) E,

dI
dt

= σE − (µ + c) I,

dB
dt

= k (E + I)− (d + nτ) B,

dSh
dt

= −βhSh (E + I)− ϕhShB + σh (1 − p) Iah,

dIah
dt

= βhSh (E + I) + ϕhShB − σh Iah,

dIch
dt

= σh pIah.

(4)

In model (4), susceptible sheep are denoted S, vaccinated sheep by V, exposed sheep by E, and
infected sheep by I. The total number of sheep is N = S+V +E+ I. The number of infectious units
in the environment is represented by B. Susceptible humans are signified by Sh, acute infection
humans by Iah, and chronic infection humans by Ich. Acute infection humans, if they do not
recover, pass into the compartment chronic infection. Total human population Nh = Sh + Iah + Ich.
The birth and mortality rates for sheep are A and µ, respectively. Susceptible sheep interact with
exposed and infected sheep at the rate of β. Brucella is transmitted to susceptible sheep at a rate
ϕ. Also, Susceptible sheep are vaccinated at the rate υ, whereas ε is an incorrect vaccination rate.
The immunity of vaccinated sheep is lost at a rate of δ. Exposed sheep are infected at the rate σ,
and infected sheep are culled at a rate c. Brucella from exposed and infected sheep are shed at a
rate k. While Brucella decays in the environment at a rate d, it is effectively disinfected at a rate τ.
No data are reported on the transmission among humans of brucellosis between 2005 and 2010,
so the rate of transmission among humans is assumed to be zero. Additionally, in the model (4),
brucellosis transmission humans directly from sheep at a rate of βh and indirectly from Brucella
at a rate of ϕh. Acute infection humans become chronic infection at a rate σh p. Chronic infection
humans are also susceptible to the σh (1 − p) rate. Since the study of Kermack and McKendrick
[44], epidemiological models have been created with the recovered compartment to observe the
spread of the infection in more detail. However, in model (4), there is no recovered compartment
for humans. Additionally, human birth and death rates are other important parameters to consider
when analyzing the population. Note that these parameters are not adapted to model (4). For this
reason, the model is developed by considering the mentioned deficiencies and is introduced with
the ABC derivative so that it can be discussed realistically.

The classical derivative has the s−1 second dimension to represent s seconds, while the ABC
0Dα

t
fractional derivative has the s−α dimension. The auxiliary parameter θ with second dimension s is
employed for unit consistency [45]. The following is the fractional-order brucellosis transmission
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model for 0 ≤ α ≤ 1 and t ≥ 0:

θα−1 ABC
0Dα

t S = Λs − βS (E + I)− ϕ SB
ρ+B − (µ + ν) S + δV,

θα−1 ABC
0Dα

t V = νS − (µ + δ)V − εβV (E + I)− εϕ VB
ρ+B ,

θα−1 ABC
0Dα

t E = β (S + εV) (E + I) + ϕ
(S+εV)B

ρ+B − (σ + µ) E,
θα−1 ABC

0Dα
t I = σE − (µ + c) I,

θα−1 ABC
0Dα

t B = k (E + I)− (d + nτ) B,
θα−1 ABC

0Dα
t Sh = Λh − βhSh (E + I)− ϕh

ShB
ρ+B − µhSh,

θα−1 ABC
0Dα

t Iah = βhSh (E + I) + ϕh
ShB
ρ+B − (σh + µh) Iah,

θα−1 ABC
0Dα

t Ich = σh pIah − (γch + µh) Ich,
θα−1 ABC

0Dα
t Rh = σh (1 − p) Iah + γch Ich − µhRh,

(5)

where the initial conditions are{
S (0) = S0, V (0) = V0, I (0) = I0, E (0) = E0, B (0) = B0,
Sh (0) = Sh0, Iah (0) = Iah0, Ich (0) = Ich0, Rh (0) = Rh0.

(6)

Figure 1. Flowchart of the direct and indirect transmission of the developed fractional brucellosis model

As seen in Figure 1, the human population is separated into four classifications based on their
epidemiological stages. The compartment Rh in the model (5) describes recovered humans.
To elaborately investigate these stages, it is assumed that there is a recruitment rate Λh for
compartment S and a natural death rate µh for all compartments. Acute and chronic infections
are recovered with rates σh (1 − p) and γch, respectively. Also, susceptible sheep and humans
catch infections indirectly at rates ϕ B

ρ+B and ϕh
B

ρ+B , in which ϕ and ϕh represent interaction rates
with the bacteria-contaminated environment, ρ is the half-saturation constant of the Brucella
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population and 1
ρ+B is the inhibition effect as well. Hence, B

ρ+B is the probability of exposed sheep
and acute infection in humans owning the infection with symptoms, given interaction with the
contaminated environment. Although the saturated incidence rate initially behaves linearly, the
probability of infection continues to increase to a specific level as the bacteria reproduce. That is to
say that even if Brucella in a contaminated environment is in extraordinary numbers, individuals
indirectly interacting with more Brucella will not significantly augment the risk to their already
threatened health. In this way, the infection transmission level will saturate at rates ϕ and ϕh.
The amount of Brucella interacted to begin infection is already within this incidence rate. Thus,
the saturated incidence rate appears more sensible than the bilinear incidence rate for indirect
transmission of bacterial diseases as it prevents the interaction rate from achieving extraordinary
numbers by determining appropriate parameters based on the behavioral change and population
density of exposed (infected) individuals.

3 Existence and uniqueness

In this section, the existence of a unique solution for the developed brucellosis model is analyzed.
By fixed point theory, it is verified that developed fractional transmission dynamics have a unique
solution with the initial conditions (6). Suppose a continuous R → R function described by H (J )
including the sup norm characteristic is a Banach space on J = [0, T] and

Q = H (J )×H (J )×H (J )×H (J )×H (J )×H (J )×H (J )×H (J )×H (J ) ,

with norm ∥(S, V, E, I, B, Sh, Iah, Ich, Rh)∥ = ∥S∥+ ∥V∥+ ∥E∥+ ∥I∥+ ∥B∥+ ∥Sh∥+ ∥Iah∥+ ∥Ich∥+
∥Rh∥, where ∥S∥ = sup

t∈J
|S| , ∥V∥ = sup

t∈J
|V (t)| , ∥E∥ = sup

t∈J
|E (t)| , ∥I∥ = sup

t∈J
|I (t)| , ∥B∥ =

sup
t∈J

|B (t)| , ∥Sh∥ = sup
t∈J

|Sh (t)| , ∥Iah∥ = sup
t∈J

|Iah (t)| , ∥Ich∥ = sup
t∈J

|Ich (t)| , ∥Rh∥ = sup
t∈J

|Rh (t)| .

Implementing the fractional integral described in (3) to each side of Eq. (5), the model is written
below:

S (t)− S (0) = θ1−α ABC
0 Iα

t

{
Λs − βS (t) (E (t) + I (t))− ϕ

S(t)B(t)
ρ+B(t) − (µ + ν) S (t) + δV (t)

}
,

V (t)− V (0) = θ1−α ABC
0 Iα

t

{
νS (t)− (µ + δ)V (t)− εβV (t) (E (t) + I (t))− εϕ

V(t)B(t)
ρ+B(t)

}
,

E (t)− E (0) = θ1−α ABC
0 Iα

t

{
β (S (t) + εV (t)) (E (t) + I (t)) + ϕ

(S(t)+εV(t))B(t)
ρ+B(t) − (σ + µ) E (t)

}
,

I (t)− I (0) = θ1−α ABC
0 Iα

t {σE (t)− (µ + c) I (t)} ,
B (t)− B (0) = θ1−α ABC

0 Iα
t {k (E (t) + I (t))− (d + nτ) B (t)} ,

Sh (t)− Sh (0) = θ1−α ABC
0 Iα

t

{
Λh − βhSh (t) (E (t) + I (t))− ϕh

Sh(t)B(t)
ρ+B(t) − µhSh (t)

}
,

Iah (t)− Iah (0) = θ1−α ABC
0 Iα

t

{
βhSh (t) (E (t) + I (t)) + ϕh

Sh(t)B(t)
ρ+B(t) − (σh + µh) Iah (t)

}
,

Ich (t)− Ich (0) = θ1−α ABC
0 Iα

t {σh pIah (t)− (γch + µh) Ich (t)} ,
Rh (t)− Rh (0) = θ1−α ABC

0 Iα
t {σh (1 − p) Iah (t) + γch Ich (t)− µhRh (t)} .

(7)
Exerting the definition given by (3), the following expression is acquired:

S (t)− S (0) = (1−α)θ1−α

M(α)
F1 (t, S) + αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F1 (ϱ, S) dϱ,

V (t)− V (0) = (1−α)θ1−α

M(α)
F2 (t, V) + αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F2 (ϱ, V) dϱ,

E (t)− E (0) = (1−α)θ1−α

M(α)
F3 (t, E) + αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F3 (ϱ, E) dϱ,
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I (t)− I (0) = (1−α)θ1−α

M(α)
F4 (t, I) + αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F4 (ϱ, I) dϱ,

B (t)− B (0) = (1−α)θ1−α

M(α)
F5 (t, B) + αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F5 (ϱ, B) dϱ,

Sh (t)− Sh (0) =
(1−α)θ1−α

M(α)
F6 (t, Sh) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F6 (ϱ, Sh) dϱ,

Iah (t)− Iah (0) =
(1−α)θ1−α

M(α)
F7 (t, Iah) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F7 (ϱ, Iah) dϱ,

Ich (t)− Ich (0) =
(1−α)θ1−α

M(α)
F8 (t, Ich) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F8 (ϱ, Ich) dϱ,

Rh (t)− Rh (0) =
(1−α)θ1−α

M(α)
F9 (t, Rh) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F9 (ϱ, Rh) dϱ,

(8)

where the kernels are described by

F1 (t, S) = Λs − βS (t) (E (t) + I (t))− ϕ
S(t)B(t)
ρ+B(t) − (µ + ν) S (t) + δV (t) ,

F2 (t, V) = νS (t)− (µ + δ)V (t)− εβV (t) (E (t) + I (t))− εϕ
V(t)B(t)
ρ+B(t) ,

F3 (t, E) = β (S (t) + εV (t)) (E (t) + I (t)) + ϕ
(S(t)+εV(t))B(t)

ρ+B(t) − (σ + µ) E (t) ,
F4 (t, I) = σE (t)− (µ + c) I (t) ,
F5 (t, B) = k (E (t) + I (t))− (d + nτ) B (t) ,
F6 (t, Sh) = Λh − βhSh (t) (E (t) + I (t))− ϕh

Sh(t)B(t)
ρ+B(t) − µhSh (t) ,

F7 (t, Iah) = βhSh (t) (E (t) + I (t)) + ϕh
Sh(t)B(t)
ρ+B(t) − (σh + µh) Iah (t) ,

F8 (t, Ich) = σh pIah (t)− (γch + µh) Ich (t) ,
F9 (t, Rh) = σh (1 − p) Iah (t) + γch Ich (t)− µhRh (t) .

(9)

Theorem 1 If the below inequality holds

0 ≤ β (η3 + η4) + ϕ
η5

ρ + η5
< 1,

so the kernel F1 provides for Lipschitz condition and contraction.

Proof Assumed S and S1 are two functions, the undermentioned inequality is obtained:

∥F1 (t, S)− F1 (t, S1)∥ =
∥∥∥Λs −

(
β (E (t) + I (t)) + ϕ

B(t)
ρ+B(t) + µ + ν

)
S (t) + δV (t)

−
(

Λs −
(

β ( E (t) + I (t)) + ϕ
B(t)

ρ+B(t) + µ + ν
)

S1 (t) + δV (t)
)∥∥∥

≤
(

β ( E (t) + I (t)) + ϕ
B(t)

ρ+B(t) + µ + ν
)
∥S (t)− S1 (t)∥ .

Let ϖ1 =
(

β ( E (t) + I (t)) + ϕ
B(t)

ρ+B(t) + µ + ν
)

, where ∥S∥ ≤ η1, ∥V∥ ≤ η2, ∥E∥ ≤ η3, ∥I∥ ≤ η4,
∥B∥ ≤ η5, ∥Sh∥ ≤ η6, ∥Iah∥ ≤ η7, ∥Ich∥ ≤ η8, and ∥Rh∥ ≤ η9, are bounded functions, we have

∥F1 (t, S)− F1 (t, S1)∥ ≤
(

β (η3 + η4) + ϕ
η5

ρ + η5
+ µ + ν

)
∥S (t)− S1 (t)∥

≤ ϖ1 ∥S (t)− S1 (t)∥ .
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Thus, F1 (t, S) supplies the Lipschitz condition with Lipschitz constant

ϖ1 =

(
β ( E (t) + I (t)) + ϕ

B(t)
ρ + B (t)

+ µ + ν

)
.

Furthermore, 0≤ ϖ1 < 1, then kernel F1 (t, S) is a contraction. In the same manner, the Lipschitz
condition and contraction are provided by the kernels F2, F3, F4, F5, F6, F7, F8, and F9 given below:

∥F2 (t, V)−F2 (t,V1)∥ ≤ ϖ2 ∥V (t)−V1 (t)∥ ,
∥F3 (t, E)−F3 (t, E1)∥ ≤ ϖ3 ∥E (t)−E1 (t)∥ ,
∥F4 (t, I)−F4 (t, I1)∥ ≤ ϖ4 ∥I(t)−I1 (t)∥ ,
∥F5 (t, B)−F5 (t, B1)∥ ≤ ϖ5 ∥B(t)−B1 (t)∥ ,
∥F6 (t, Sh)−F6 (t, Sh1)∥ ≤ ϖ6 ∥Sh (t)− Sh1 (t)∥ ,
∥F7 (t, Iah)−F7 (t,Iah1)∥ ≤ ϖ7 ∥Iah (t)−Iah1 (t)∥ ,
∥F8 (t, Ich)−F7 (t,Ich1)∥ ≤ ϖ8 ∥Ich (t)−Ich1 (t)∥ ,
∥F9 (t,Rh)−F9 (t,Rh1)∥ ≤ ϖ9 ∥Rh (t)−Rh1 (t)∥ .

(10)

The kernels in Eq. (8) can be rewritten as:

S (t) = S (0) + (1−α)θ1−α

M(α)
F1 (t, S) + αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F1 (ϱ, S) dϱ,

V (t) = V (0) + (1−α)θ1−α

M(α)
F2 (t, V) + αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F2 (ϱ, V) dϱ,

E (t) = E (0) + (1−α)θ1−α

M(α)
F3 (t, E) + αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F3 (ϱ, E) dϱ,

I (t) = I (0) + (1−α)θ1−α

M(α)
F4 (t, I) + αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F4 (ϱ, I) dϱ,

B (t) = B (0) + (1−α)θ1−α

M(α)
F5 (t, B) + αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F5 (ϱ, B) dϱ,

Sh (t) = Sh (0) +
(1−α)θ1−α

M(α)
F6 (t, Sh) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F6 (ϱ, Sh) dϱ,

Iah (t) = Iah (0) +
(1−α)θ1−α

M(α)
F7 (t, Iah) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F7 (ϱ, Iah) dϱ,

Ich (t) = Ich (0) +
(1−α)θ1−α

M(α)
F8 (t, Ich) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F8 (ϱ, Ich) dϱ,

Rh (t) = Rh (0) +
(1−α)θ1−α

M(α)
F9 (t, Rh) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F9 (ϱ, Rh) dϱ.

(11)

Going recursively, Eq. (11) yielded

Sn (t) =
(1−α)θ1−α

M(α)
F1 (t, Sn−1) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F1 (ϱ, Sn−1) dϱ,

Vn (t) =
(1−α)θ1−α

M(α)
F2 (t, Vn−1) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F2 (ϱ, Vn−1) dϱ,

En (t) =
(1−α)θ1−α

M(α)
F3 (t, En−1) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F3 (ϱ, En−1) dϱ,
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In (t) =
(1−α)θ1−α

M(α)
F4 (t, In−1) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F4 (ϱ, In−1) dϱ,

Bn (t) =
(1−α)θ1−α

M(α)
F5 (t, Bn−1) +

αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F5 (ϱ, Bn−1) dϱ,

Sh,n (t) =
(1−α)θ1−α

M(α)
F6

(
t, Sh,n−1

)
+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F6

(
ϱ, Sh,n−1

)
dϱ,

Iah,n (t) =
(1−α)θ1−α

M(α)
F7

(
t, Iah,n−1

)
+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F7

(
ϱ, Iah,n−1

)
dϱ,

Ich,n (t) =
(1−α)θ1−α

M(α)
F8

(
t, Ich,n−1

)
+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F8

(
ϱ, Ich,n−1

)
dϱ,

Rh,n (t) =
(1−α)θ1−α

M(α)
F9

(
t, Rh,n−1

)
+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1F9

(
ϱ, Rh,n−1

)
dϱ,

(12)

along with the initial conditions S (0) = S0, V (0) = V0, I (0) = I0, E (0) = E0, B (0) = B0,
Sh (0) = Sh0, Iah (0) = Iah0, Ich (0) = Ich0, and Rh (0) = Rh0. By taking the difference between
successive terms, the following equalities are reached:

ψ1n (t) = Sn (t)− Sn−1 (t) =
(1−α)θ1−α

M(α)
{F1 (t, Sn−1)− F1 (t, Sn−2)}

+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1

{F1 (ϱ, Sn−1)− F1 (ϱ, Sn−2)} dϱ,
(13)

ψ2n (t) = Vn (t)− Vn−1 (t) =
(1−α)θ1−α

M(α)
{F2 (t, Vn−1)− F2 (t, Vn−2)}

+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1

{F2 (ϱ, Vn−1)− F2 (ϱ, Vn−2)} dϱ,
(14)

ψ3n (t) = En (t)− En−1 (t) =
(1−α)θ1−α

M(α)
{F3 (t, En−1)− F3 (t, En−2)}

+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1

{F3 (ϱ, En−1)− F3 (ϱ, En−2)} dϱ,
(15)

ψ4n (t) = In (t)− In−1 (t) =
(1−α)θ1−α

M(α)
{F4 (t, In−1)− F4 (t, In−2)}

+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1

{F4 (ϱ, In−1)− F4 (ϱ, In−2)} dϱ,
(16)

ψ5n (t) = Bn (t)− Bn−1 (t) =
(1−α)θ1−α

M(α)
{F5 (t, Bn−1)− F5 (t, Bn−2)}

+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1

{F5 (ϱ, Bn−1)− F5 (ϱ, Bn−2)} dϱ,
(17)
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ψ6n (t) = Sh,n (t)− Sh,n−1 (t) =
(1−α)θ1−α

M(α)

{
F6

(
t, Sh,n−1

)
− F6

(
t, Sh,n−2

)}
+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1 {F6

(
ϱ, Sh,n−1

)
− F6

(
ϱ, Sh,n−2

)}
dϱ,

(18)

ψ7n (t) = Iah,n (t)− Iah,n−1 (t) =
(1−α)θ1−α

M(α)

{
F7

(
t, Iah,n−1

)
− F7

(
t, Iah,n−2

)}
+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1 {F7

(
ϱ, Iah,n−1

)
− F7

(
ϱ, Iah,n−2

)}
dϱ,

(19)

ψ8n (t) = Ich,n (t)− Ich,n−1 (t) =
(1−α)θ1−α

M(α)

{
F8

(
t, Ich,n−1

)
− F8

(
t, Ich,n−2

)}
+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1 {F8

(
ϱ, Ich,n−1

)
− F8

(
ϱ, Ich,n−2

)}
dϱ,

(20)

ψ9n (t) = Rh,n (t)− Rh,n−1 (t) =
(1−α)θ1−α

M(α)

{
F9

(
t, Rh,n−1

)
− F9

(
t, Rh,n−2

)}
+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1 {F9

(
ϱ, Rh,n−1

)
− F9

(
ϱ, Rh,n−2

)}
dϱ.

(21)

In addition, it is obvious that Sn (t) =
∑n

i=0 ψ1i (t), Vn (t) =
∑n

i=0 ψ2i (t), En (t) =
∑n

i=0 ψ3i (t),
In (t) =

∑n
i=0 ψ4i (t) , Bn (t) =

∑n
i=0 ψ5i (t) , Sh,n (t) =

∑n
i=0 ψ6i (t), Iah,n (t) =

∑n
i=0 ψ7i (t) ,

Ich,n (t) =
∑n

i=0 ψ8i (t) , and Rh,n (t) =
∑n

i=0 ψ9i (t). By implementing the norm to both sides
of Eq. (13) and utilizing the triangular inequality, it can be expressed as:

∥ψ1n (t)∥ = ∥Sn (t)− Sn−1 (t)∥ =
∥∥∥ (1−α)θ1−α

M(α)
{F1 (t, Sn−1)− F1 (t, Sn−2)}

+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1

{F1 (ϱ, Sn−1)− F1 (ϱ, Sn−2)} dϱ

∥∥∥∥∥
≤ (1−α)θ1−α

M(α) ∥F1 (t, Sn−1)− F1 (t, Sn−2)∥

+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1 ∥F1 (ϱ, Sn−1)− F1 (ϱ, Sn−2)∥ dϱ.

(22)

Due to the fact that the Lipschitz condition is provided for by kernel F1, the following can be
written:

∥ψ1n (t)∥ = ∥Sn (t)− Sn−1 (t)∥ ≤ (1−α)θ1−α

M(α)
ϖ1 ∥Sn−1 − Sn−2∥

+ αθ1−α

M(α)Γ(α)ϖ1

t∫
0
(t − ϱ)α−1 ∥Sn−1 − Sn−2∥ dϱ,

(23)

then obtained as:

∥ψ1n (t)∥ ≤ (1 − α) θ1−α

M (α)
ϖ1

∥∥∥ψ1(n−1) (t)
∥∥∥+ αθ1−α

M (α) Γ (α)
ϖ1

t∫
0

(t − ϱ)α−1
∥∥∥ψ1(n−1) (ϱ)

∥∥∥ dϱ. (24)
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Similarly, the following results are acquired

∥ψ2n (t)∥ ≤ (1−α)θ1−α

M(α)
ϖ2

∥∥∥ψ2(n−1) (t)
∥∥∥+ αθ1−α

M(α)Γ(α)ϖ2

t∫
0
(t − ϱ)α−1

∥∥∥ψ2(n−1) (ϱ)
∥∥∥ dϱ,

∥ψ3n (t)∥ ≤ (1−α)θ1−α

M(α)
ϖ3

∥∥∥ψ3(n−1) (t)
∥∥∥+ αθ1−α

M(α)Γ(α)ϖ3

t∫
0
(t − ϱ)α−1

∥∥∥ψ3(n−1) (ϱ)
∥∥∥ dϱ,

∥ψ4n (t)∥ ≤ (1−α)θ1−α

M(α)
ϖ4

∥∥∥ψ4(n−1) (t)
∥∥∥+ αθ1−α

M(α)Γ(α)ϖ4

t∫
0
(t − ϱ)α−1

∥∥∥ψ4(n−1) (ϱ)
∥∥∥ dϱ,

∥ψ5n (t)∥ ≤ (1−α)θ1−α

M(α)
ϖ5

∥∥∥ψ5(n−1) (t)
∥∥∥+ αθ1−α

M(α)Γ(α)ϖ5

t∫
0
(t − ϱ)α−1

∥∥∥ψ5(n−1) (ϱ)
∥∥∥ dϱ,

∥ψ6n (t)∥ ≤ (1−α)θ1−α

M(α)
ϖ6

∥∥∥ψ6(n−1) (t)
∥∥∥+ αθ1−α

M(α)Γ(α)ϖ6

t∫
0
(t − ϱ)α−1

∥∥∥ψ6(n−1) (ϱ)
∥∥∥ dϱ,

∥ψ7n (t)∥ ≤ (1−α)θ1−α

M(α)
ϖ7

∥∥∥ψ7(n−1) (t)
∥∥∥+ αθ1−α

M(α)Γ(α)ϖ7

t∫
0
(t − ϱ)α−1

∥∥∥ψ7(n−1) (ϱ)
∥∥∥ dϱ,

∥ψ8n (t)∥ ≤ (1−α)θ1−α

M(α)
ϖ8

∥∥∥ψ8(n−1) (t)
∥∥∥+ αθ1−α

M(α)Γ(α)ϖ8

t∫
0
(t − ϱ)α−1

∥∥∥ψ8(n−1) (ϱ)
∥∥∥ dϱ,

∥ψ9n (t)∥ ≤ (1−α)θ1−α

M(α)
ϖ9

∥∥∥ψ9(n−1) (t)
∥∥∥+ αθ1−α

M(α)Γ(α)ϖ9

t∫
0
(t − ϱ)α−1

∥∥∥ψ9(n−1) (ϱ)
∥∥∥ dϱ.

(25)

Considering the results received, the existence of the solution of model (5) is given with the help
of the following theorem.

Theorem 2 If there exists t0 satisfying the following inequality

1 − α

M (α)
ϖi +

t0

M (α) Γ (α)
ϖi < 1, for i = 1, 2, ..., 9, (26)

then the model (5) has a solution.

Proof It is established that the functions S (t) , V (t) , I (t) , E (t) , B (t) , Sh (t) , Iah (t) , Ich (t) , and
Rh (t) are bounded, and their kernels are fulfilled the Lipschitz condition. Employing the recursive
technique, the following relationship is achieved:

∥ψ1n (t)∥ ≤ ∥S (0)∥
[
(1−α)θ1−α

M(α)
ϖ1 +

tθ1−α

M(α)Γ(α)ϖ1

]n
,

∥ψ2n (t)∥ ≤ ∥V (0)∥
[
(1−α)θ1−α

M(α)
ϖ2 +

tθ1−α

M(α)Γ(α)ϖ2

]n
,

∥ψ3n (t)∥ ≤ ∥E (0)∥
[
(1−α)θ1−α

M(α)
ϖ3 +

tθ1−α

M(α)Γ(α)ϖ3

]n
,

∥ψ4n (t)∥ ≤ ∥I (0)∥
[
(1−α)θ1−α

M(α)
ϖ4 +

tθ1−α

M(α)Γ(α)ϖ4

]n
,

∥ψ5n (t)∥ ≤ ∥B (0)∥
[
(1−α)θ1−α

M(α)
ϖ5 +

tθ1−α

M(α)Γ(α)ϖ5

]n
,

∥ψ6n (t)∥ ≤ ∥Sh (0)∥
[
(1−α)θ1−α

M(α)
ϖ6 +

tθ1−α

M(α)Γ(α)ϖ6

]n
,

∥ψ7n (t)∥ ≤ ∥Iah (0)∥
[
(1−α)θ1−α

M(α)
ϖ7 +

tθ1−α

M(α)Γ(α)ϖ7

]n
,

∥ψ8n (t)∥ ≤ ∥Ich (0)∥
[
(1−α)θ1−α

M(α)
ϖ8 +

tθ1−α

M(α)Γ(α)ϖ8

]n
,

∥ψ9n (t)∥ ≤ ∥Rh (0)∥
[
(1−α)θ1−α

M(α)
ϖ9 +

tθ1−α

M(α)Γ(α)ϖ9

]n
.

(27)

Hence, the solutions exist and are provided continuously for the model (5). For the sake of clarity,
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to exhibit that the functions S (t) , V (t) , I (t) , E (t) , B (t) , Sh (t) , Iah (t) , Ich (t) , and Rh (t) have a
solution to model (5), suppose that

S (t)− S (0) = Sn (t)− Φ1n (t) ,
V (t)− V (0) = Vn (t)− Φ2n (t) ,
E (t)− E (0) = En (t)− Φ3n (t) ,
I (t)− I (0) = In (t)− Φ4n (t) ,
B (t)− B (0) = Bn (t)− Φ5n (t)
Sh (t)− Sh (0) = Sh,n (t)− Φ6n (t) ,
Iah (t)− Iah (0) = Iah,n (t)− Φ7n (t) ,
Ich (t)− Ich (0) = Ich,n (t)− Φ8n (t) ,
Rh (t)− Rh (0) = Rh,n (t)− Φ9n (t) .

(28)

Accordingly, the expression ∥Φ1n (t)∥ is acquired as:

∥Φ1n (t)∥ =
∥∥∥ (1−α)θ1−α

M(α)
{F1 (t, S)− F1 (t, Sn−1)}

+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1

{F1 (ϱ, S)− F1 (ϱ, Sn−1)} dϱ

∥∥∥∥∥
≤ (1−α)θ1−α

M(α) ∥F1 (t, S)− F1 (t, Sn−1)∥

+ αθ1−α

M(α)Γ(α)

t∫
0
(t − ϱ)α−1 ∥F1 (ϱ, S)− F1 (ϱ, Sn−1)∥ dϱ

≤ (1−α)θ1−α

M(α)
ϖ1 ∥S − Sn−1∥+ tθ1−α

M(α)Γ(α)ϖ1 ∥S − Sn−1∥ .

(29)

After using this process recursively, then yields at t0

∥Φ1n (t)∥ ≤
[
(1 − α) θ1−α

M (α)
+

t0θ1−α

M (α) Γ (α)

]n+1

ϖn+1
1 P1. (30)

As n approaches infinity, taking the limit to both sides of Eq. (30), it is obtained as ∥Φ1n (t)∥ → 0.
Consequently, the existence of the solution of the model (5) is verified. Similarly, it is found
∥Φ2n (t)∥ → 0, ∥Φ3n (t)∥ → 0, ∥Φ4n (t)∥ → 0, ∥Φ5n (t)∥ → 0, ∥Φ6n (t)∥ → 0, ∥Φ7n (t)∥ → 0,
∥Φ8n (t)∥ → 0, and ∥Φ9n (t)∥ → 0. Now, the uniqueness of the solution is given by the following
theorem.

Theorem 3 The model (5) has a unique solution, provided that

(1 − α) θ1−α

M (α)
ϖi +

t0θ1−α

M (α) Γ (α)
ϖi < 1, for i = 1, 2, ..., 9.

Proof Assumed that S1 (t), V1 (t), E1 (t), I1 (t), B1 (t) , Sh1 (t) , Iah1 (t) , Ich1 (t) , and Rh1 (t) are also
solutions of the model (5). Then,

S (t)− S1 (t) =
(1−α)θ1−α

M(α)
{F1 (t, S)− F1 (t, S1)}

+ αθ1−α

M(α)Γ(α)

t∫
a
(t − ϱ)α−1

{F1 (ϱ, S)− F1 (ϱ, S1)} dϱ.
(31)

Considering that the kernel fulfills the Lipschitz condition, implementing the norm to both sides
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of Eq. (31), it reaches the inequality presented below:

∥S (t)− S1 (t)∥ ≤ (1 − α) θ1−α

M (α)
ϖ1 ∥S (t)− S1 (t)∥+

tθ1−α

M (α) Γ (α)
ϖ1 ∥S (t)− S1 (t)∥ . (32)

It gives

∥S (t)− S1 (t)∥
(

1 −
(1 − α) θ1−α

M (α)
ϖ1 −

tθ1−α

M (α) Γ (α)
ϖ1

)
≤ 0. (33)

As
(

1 −
(1−α)θ1−α

M(α)
ϖ1 −

tθ1−α

M(α)Γ(α)ϖ1

)
> 0, then ∥S (t)− S1 (t)∥ = 0. As a result, it is attained

S (t) = S1 (t). Similarly, it is seen that V (t) = V1 (t), E (t) = E1 (t), I (t) = I1 (t), B (t) = B1 (t),
Sh (t) = Sh1 (t), Iah (t) = Iah1 (t), Ich (t) = Ich1 (t) , and Rh (t) = Rh1 (t) . Thus, it is concluded that
model (5) has a unique solution.

4 Numerical solutions and discussion

In this section, numerical solutions of the improved fractional brucellosis model are obtained using
the parameter values in Table 1 for t = 12 years. The initial conditions are S(0) = 4.341 × 107,
V(0) = 8.44 × 106, E(0) = 0, I(0) = 1.33 × 106, B(0) = 6 × 106, Sh(0) = 2.384 × 107, Iah(0) =
8663, Ich(0) = 0, and Rh(0) = 0 [42]. The Adams-type predictor-corrector method is applied to
solve the fractional-order brucellosis model [46]. All numerical results are given by means of
MATLAB.

Table 1. Interpretation of parameters in model (5)

Parameter Value & Units & References
Λs 11629200 (sheep year−1), [42]
β 1.48×10−8 (sheep−1year−1), [42]
ϕ 1.7×10−10 (bacteria−1 year−1), [42]
ρ 107 (bacteria), Assumed
µ 0.22 (year−1), [42]
ν 0.316 (year−1), [42]
δ 0.4 (year−1), [42]
ε 0.18 (year−1), [42]
σ 1 (year−1), [42]
c 0.15 (year−1), [42]
k 15 (bacteria sheep−1 year−1), [42]
d 3.6 (year−1), [42]
n 0 (year−1), [42]
τ 0 (year−1), [42]
Λh 0.0057 (human year−1), [47]
βh 1.58×10−10 (sheep−1year−1), [42]
ϕh 1×10−11 (bacteria−1year−1), [42]
µh 0.0054 (year−1), [47]
σh p 0.6 (year−1), [42]
σh(1 − p) 0.4 (year−1), [42]
γch 0.5 (year−1), [48]

Figure 2 compares the developed fractional brucellosis model with the integer model over a 12-
year period. The fractional brucellosis model demonstrates a slight reduction in the transmission
of bacteria to sheep and humans with a saturated incidence rate. This reduction is observed due
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0 2 4 6 8 10 12

Time(years)

2

2.5

3

3.5

4

10
7Susceptible Sheep

0 2 4 6 8 10 12

Time(years)

1

1.2

1.4

1.6

10
7 Vaccinated Sheep

integer-order model developed fractional-order model, =0.95

0 2 4 6 8 10 12

Time(years)

0

1

2

3

4

10
6 Exposed Sheep

0 2 4 6 8 10 12

Time(years)

0

5

10
10

6 Infected Sheep

0 2 4 6 8 10 12

Time(years)

0

2

4

6
10

7 Brucella

0 2 4 6 8 10 12

Time(years)

2.25

2.3

2.35

2.4
10

7 Susceptible Humans

0 2 4 6 8 10 12

Time(years)

0

2

4

6
10

4 Acute Infection Humans

0 2 4 6 8 10 12

Time(years)

0

0.5

1

1.5

2
10

5Chronic Infection Humans

0 2 4 6 8 10 12

Time(years)

0

5

10

15
10

4 Recovered Humans

Figure 2. The comparison of the integer-order model with the developed fractional derivative model

to various factors, including the human birth and death rates and the existence of a recovered
compartment. The inclusion of a recovered compartment of humans into the model resulted
in a reduction in the number of susceptible individuals. In the integer order brucellosis model,
chronically infected humans become susceptible upon recovery. In contrast, in the developed
fractional brucellosis model, the behavior of susceptible and recovered humans in the process can
be clearly examined with the addition of the recovered compartment of humans. This allows for
the review of the transmission process with greater specificity. Moreover, a reduction in the rate of
transmission is observed due to the continued shedding of Brucella bacteria from exposed and
infected sheep throughout the process. Figure 3, the developed fractional brucellosis model is
compared in different orders and this change is reflected in the graphical results as flexibility. In
other words, the behavior appears to fade as the order of derivatives decreases. Nevertheless, it is
evident from the graphs that an interspecies brucellosis epidemic has initiated. Consequently, it is
imperative to implement various control strategies to eliminate the infection.

5 Conclusions

Brucellosis is an interspecies infectious disease that influences people and animal health, as well
as financial growth in affected areas. Hence, figuring out the transmission dynamic of brucellosis
has become crucial. For this purpose, a fractional-order model for interspecies transmission of
brucellosis was developed. First, the current brucellosis transmission model with integer order



128 | Bulletin of Biomathematics, 2024, Vol. 2, No. 1, 114–132

0 2 4 6 8 10 12

Time(years)

2.5

3

3.5

4

4.5
10

7 Susceptible Sheep

0 2 4 6 8 10 12

Time(years)

1

1.2

1.4

1.6

10
7 Vaccinated Sheep

=0.95 =0.9 =0.85 =0.8

0 2 4 6 8 10 12

Time(years)

0

1

2

3

4
10

6 Exposed Sheep

0 2 4 6 8 10 12

Time(years)

0

2

4

6

8
10

6 Infected Sheep

0 2 4 6 8 10 12

Time(years)

0

1

2

3

4

10
7 Brucella

0 2 4 6 8 10 12

Time(years)

2.25

2.3

2.35

2.4
10

7Susceptible Humans

0 2 4 6 8 10 12

Time(years)

1

1.5

2

2.5

3

10
4Acute Infection Humans

0 2 4 6 8 10 12

Time(years)

0

1

2

3
10

4Chronic Infection Humans

0 2 4 6 8 10 12

Time(years)

0

5

10

15
10

4 Recovered Humans

Figure 3. The comparison of the developed fractional derivative model with different fractional orders

was incorporated with the ABC fractional derivative to examine the transmission by its behavior.
Then, to observe more specifically, the model was discussed with the recovered compartment,
recruitment, and natural mortality rate for humans. Also, the saturated incidence rate was
proposed for brucellosis as indirectly transmitted to individuals from the environment. The fixed-
point theory was used to reveal the existence and uniqueness of solutions to the developed model.
The model has been numerically solved using Adams-type predictor-corrector method with help
of the MATLAB. Graphically, the effect of fractional derivatives of different orders on the model
behavior was examined. It was observed that the interspecies brucellosis epidemic increased in
the process. For this reason, an analysis of the dynamics and sensitivity of the developed fractional
brucellosis model is planned for future work. Thus, we hope that the factors that cause brucellosis
transmission, which adversely affects the community, could be determined.
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